Stochastic Modeling in Economics and Finance

Stochastic Modeling in Economics and Finance PDF Author: Jitka Dupacova
Publisher: Springer Science & Business Media
ISBN: 0306481677
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
In Part I, the fundamentals of financial thinking and elementary mathematical methods of finance are presented. The method of presentation is simple enough to bridge the elements of financial arithmetic and complex models of financial math developed in the later parts. It covers characteristics of cash flows, yield curves, and valuation of securities. Part II is devoted to the allocation of funds and risk management: classics (Markowitz theory of portfolio), capital asset pricing model, arbitrage pricing theory, asset & liability management, value at risk. The method explanation takes into account the computational aspects. Part III explains modeling aspects of multistage stochastic programming on a relatively accessible level. It includes a survey of existing software, links to parametric, multiobjective and dynamic programming, and to probability and statistics. It focuses on scenario-based problems with the problems of scenario generation and output analysis discussed in detail and illustrated within a case study.

Stochastic Modeling in Economics and Finance

Stochastic Modeling in Economics and Finance PDF Author: Jitka Dupacova
Publisher: Springer Science & Business Media
ISBN: 0306481677
Category : Mathematics
Languages : en
Pages : 394

Get Book Here

Book Description
In Part I, the fundamentals of financial thinking and elementary mathematical methods of finance are presented. The method of presentation is simple enough to bridge the elements of financial arithmetic and complex models of financial math developed in the later parts. It covers characteristics of cash flows, yield curves, and valuation of securities. Part II is devoted to the allocation of funds and risk management: classics (Markowitz theory of portfolio), capital asset pricing model, arbitrage pricing theory, asset & liability management, value at risk. The method explanation takes into account the computational aspects. Part III explains modeling aspects of multistage stochastic programming on a relatively accessible level. It includes a survey of existing software, links to parametric, multiobjective and dynamic programming, and to probability and statistics. It focuses on scenario-based problems with the problems of scenario generation and output analysis discussed in detail and illustrated within a case study.

Mathematical Modeling in Economics and Finance: Probability, Stochastic Processes, and Differential Equations

Mathematical Modeling in Economics and Finance: Probability, Stochastic Processes, and Differential Equations PDF Author: Steven R. Dunbar
Publisher: American Mathematical Soc.
ISBN: 1470448394
Category : Business & Economics
Languages : en
Pages : 250

Get Book Here

Book Description
Mathematical Modeling in Economics and Finance is designed as a textbook for an upper-division course on modeling in the economic sciences. The emphasis throughout is on the modeling process including post-modeling analysis and criticism. It is a textbook on modeling that happens to focus on financial instruments for the management of economic risk. The book combines a study of mathematical modeling with exposure to the tools of probability theory, difference and differential equations, numerical simulation, data analysis, and mathematical analysis. Students taking a course from Mathematical Modeling in Economics and Finance will come to understand some basic stochastic processes and the solutions to stochastic differential equations. They will understand how to use those tools to model the management of financial risk. They will gain a deep appreciation for the modeling process and learn methods of testing and evaluation driven by data. The reader of this book will be successfully positioned for an entry-level position in the financial services industry or for beginning graduate study in finance, economics, or actuarial science. The exposition in Mathematical Modeling in Economics and Finance is crystal clear and very student-friendly. The many exercises are extremely well designed. Steven Dunbar is Professor Emeritus of Mathematics at the University of Nebraska and he has won both university-wide and MAA prizes for extraordinary teaching. Dunbar served as Director of the MAA's American Mathematics Competitions from 2004 until 2015. His ability to communicate mathematics is on full display in this approachable, innovative text.

Optimization in Economics and Finance

Optimization in Economics and Finance PDF Author: Bruce D. Craven
Publisher: Springer Science & Business Media
ISBN: 0387242805
Category : Business & Economics
Languages : en
Pages : 174

Get Book Here

Book Description
Some recent developments in the mathematics of optimization, including the concepts of invexity and quasimax, have not yet been applied to models of economic growth, and to finance and investment. Their applications to these areas are shown in this book.

Stochastic Filtering with Applications in Finance

Stochastic Filtering with Applications in Finance PDF Author: Ramaprasad Bhar
Publisher: World Scientific
ISBN: 9814304859
Category : Business & Economics
Languages : en
Pages : 354

Get Book Here

Book Description
This book provides a comprehensive account of stochastic filtering as a modeling tool in finance and economics. It aims to present this very important tool with a view to making it more popular among researchers in the disciplines of finance and economics. It is not intended to give a complete mathematical treatment of different stochastic filtering approaches, but rather to describe them in simple terms and illustrate their application with real historical data for problems normally encountered in these disciplines. Beyond laying out the steps to be implemented, the steps are demonstrated in the context of different market segments. Although no prior knowledge in this area is required, the reader is expected to have knowledge of probability theory as well as a general mathematical aptitude. Its simple presentation of complex algorithms required to solve modeling problems in increasingly sophisticated financial markets makes this book particularly valuable as a reference for graduate students and researchers interested in the field. Furthermore, it analyses the model estimation results in the context of the market and contrasts these with contemporary research publications. It is also suitable for use as a text for graduate level courses on stochastic modeling.

Mathematical Modeling And Computation In Finance: With Exercises And Python And Matlab Computer Codes

Mathematical Modeling And Computation In Finance: With Exercises And Python And Matlab Computer Codes PDF Author: Cornelis W Oosterlee
Publisher: World Scientific
ISBN: 1786347962
Category : Business & Economics
Languages : en
Pages : 1310

Get Book Here

Book Description
This book discusses the interplay of stochastics (applied probability theory) and numerical analysis in the field of quantitative finance. The stochastic models, numerical valuation techniques, computational aspects, financial products, and risk management applications presented will enable readers to progress in the challenging field of computational finance.When the behavior of financial market participants changes, the corresponding stochastic mathematical models describing the prices may also change. Financial regulation may play a role in such changes too. The book thus presents several models for stock prices, interest rates as well as foreign-exchange rates, with increasing complexity across the chapters. As is said in the industry, 'do not fall in love with your favorite model.' The book covers equity models before moving to short-rate and other interest rate models. We cast these models for interest rate into the Heath-Jarrow-Morton framework, show relations between the different models, and explain a few interest rate products and their pricing.The chapters are accompanied by exercises. Students can access solutions to selected exercises, while complete solutions are made available to instructors. The MATLAB and Python computer codes used for most tables and figures in the book are made available for both print and e-book users. This book will be useful for people working in the financial industry, for those aiming to work there one day, and for anyone interested in quantitative finance. The topics that are discussed are relevant for MSc and PhD students, academic researchers, and for quants in the financial industry.

Stochastic Optimization Models in Finance

Stochastic Optimization Models in Finance PDF Author: William T. Ziemba
Publisher: World Scientific
ISBN: 981256800X
Category : Business & Economics
Languages : en
Pages : 756

Get Book Here

Book Description
A reprint of one of the classic volumes on portfolio theory and investment, this book has been used by the leading professors at universities such as Stanford, Berkeley, and Carnegie-Mellon. It contains five parts, each with a review of the literature and about 150 pages of computational and review exercises and further in-depth, challenging problems.Frequently referenced and highly usable, the material remains as fresh and relevant for a portfolio theory course as ever.

Stochastic Methods in Economics and Finance

Stochastic Methods in Economics and Finance PDF Author: A.G. Malliaris
Publisher: North Holland
ISBN:
Category : Business & Economics
Languages : en
Pages : 332

Get Book Here

Book Description
Theory and application of a variety of mathematical techniques in economics are presented in this volume. Topics discussed include: martingale methods, stochastic processes, optimal stopping, the modeling of uncertainty using a Wiener process, Itô's Lemma as a tool of stochastic calculus, and basic facts about stochastic differential equations. The notion of stochastic ability and the methods of stochastic control are discussed, and their use in economic theory and finance is illustrated with numerous applications. The applications covered include: futures, pricing, job search, stochastic capital theory, stochastic economic growth, the rational expectations hypothesis, a stochastic macroeconomic model, competitive firm under price uncertainty, the Black-Scholes option pricing theory, optimum consumption and portfolio rules, demand for index bonds, term structure of interest rates, the market risk adjustment in project valuation, demand for cash balances and an asset pricing model.

Applications of Stochastic Optimal Control to Economics and Finance

Applications of Stochastic Optimal Control to Economics and Finance PDF Author: Salvatore Federico
Publisher:
ISBN: 9783039360581
Category :
Languages : en
Pages : 206

Get Book Here

Book Description
In a world dominated by uncertainty, modeling and understanding the optimal behavior of agents is of the utmost importance. Many problems in economics, finance, and actuarial science naturally require decision makers to undertake choices in stochastic environments. Examples include optimal individual consumption and retirement choices, optimal management of portfolios and risk, hedging, optimal timing issues in pricing American options, and investment decisions. Stochastic control theory provides the methods and results to tackle all such problems. This book is a collection of the papers published in the Special Issue "Applications of Stochastic Optimal Control to Economics and Finance", which appeared in the open access journal Risks in 2019. It contains seven peer-reviewed papers dealing with stochastic control models motivated by important questions in economics and finance. Each model is rigorously mathematically funded and treated, and the numerical methods are employed to derive the optimal solution. The topics of the book's chapters range from optimal public debt management to optimal reinsurance, real options in energy markets, and optimal portfolio choice in partial and complete information settings. From a mathematical point of view, techniques and arguments of dynamic programming theory, filtering theory, optimal stopping, one-dimensional diffusions and multi-dimensional jump processes are used.

Stochastic Dominance and Applications to Finance, Risk and Economics

Stochastic Dominance and Applications to Finance, Risk and Economics PDF Author: Songsak Sriboonchita
Publisher: CRC Press
ISBN: 1420082671
Category : Business & Economics
Languages : en
Pages : 456

Get Book Here

Book Description
Drawing from many sources in the literature, Stochastic Dominance and Applications to Finance, Risk and Economics illustrates how stochastic dominance (SD) can be used as a method for risk assessment in decision making. It provides basic background on SD for various areas of applications. Useful Concepts and Techniques for Economics ApplicationsThe

Stochastic Modeling in Economics and Finance

Stochastic Modeling in Economics and Finance PDF Author: Jitka Dupacova
Publisher:
ISBN: 9781475776393
Category :
Languages : en
Pages : 406

Get Book Here

Book Description