Author: Abraham Neyman
Publisher: Springer Science & Business Media
ISBN: 9401001898
Category : Mathematics
Languages : en
Pages : 466
Book Description
This volume is based on lectures given at the NATO Advanced Study Institute on "Stochastic Games and Applications," which took place at Stony Brook, NY, USA, July 1999. It gives the editors great pleasure to present it on the occasion of L.S. Shapley's eightieth birthday, and on the fiftieth "birthday" of his seminal paper "Stochastic Games," with which this volume opens. We wish to thank NATO for the grant that made the Institute and this volume possible, and the Center for Game Theory in Economics of the State University of New York at Stony Brook for hosting this event. We also wish to thank the Hebrew University of Jerusalem, Israel, for providing continuing financial support, without which this project would never have been completed. In particular, we are grateful to our editorial assistant Mike Borns, whose work has been indispensable. We also would like to acknowledge the support of the Ecole Poly tech nique, Paris, and the Israel Science Foundation. March 2003 Abraham Neyman and Sylvain Sorin ix STOCHASTIC GAMES L.S. SHAPLEY University of California at Los Angeles Los Angeles, USA 1. Introduction In a stochastic game the play proceeds by steps from position to position, according to transition probabilities controlled jointly by the two players.
Stochastic Games and Applications
Author: Abraham Neyman
Publisher: Springer Science & Business Media
ISBN: 9401001898
Category : Mathematics
Languages : en
Pages : 466
Book Description
This volume is based on lectures given at the NATO Advanced Study Institute on "Stochastic Games and Applications," which took place at Stony Brook, NY, USA, July 1999. It gives the editors great pleasure to present it on the occasion of L.S. Shapley's eightieth birthday, and on the fiftieth "birthday" of his seminal paper "Stochastic Games," with which this volume opens. We wish to thank NATO for the grant that made the Institute and this volume possible, and the Center for Game Theory in Economics of the State University of New York at Stony Brook for hosting this event. We also wish to thank the Hebrew University of Jerusalem, Israel, for providing continuing financial support, without which this project would never have been completed. In particular, we are grateful to our editorial assistant Mike Borns, whose work has been indispensable. We also would like to acknowledge the support of the Ecole Poly tech nique, Paris, and the Israel Science Foundation. March 2003 Abraham Neyman and Sylvain Sorin ix STOCHASTIC GAMES L.S. SHAPLEY University of California at Los Angeles Los Angeles, USA 1. Introduction In a stochastic game the play proceeds by steps from position to position, according to transition probabilities controlled jointly by the two players.
Publisher: Springer Science & Business Media
ISBN: 9401001898
Category : Mathematics
Languages : en
Pages : 466
Book Description
This volume is based on lectures given at the NATO Advanced Study Institute on "Stochastic Games and Applications," which took place at Stony Brook, NY, USA, July 1999. It gives the editors great pleasure to present it on the occasion of L.S. Shapley's eightieth birthday, and on the fiftieth "birthday" of his seminal paper "Stochastic Games," with which this volume opens. We wish to thank NATO for the grant that made the Institute and this volume possible, and the Center for Game Theory in Economics of the State University of New York at Stony Brook for hosting this event. We also wish to thank the Hebrew University of Jerusalem, Israel, for providing continuing financial support, without which this project would never have been completed. In particular, we are grateful to our editorial assistant Mike Borns, whose work has been indispensable. We also would like to acknowledge the support of the Ecole Poly tech nique, Paris, and the Israel Science Foundation. March 2003 Abraham Neyman and Sylvain Sorin ix STOCHASTIC GAMES L.S. SHAPLEY University of California at Los Angeles Los Angeles, USA 1. Introduction In a stochastic game the play proceeds by steps from position to position, according to transition probabilities controlled jointly by the two players.
Stochastic Game Strategies and their Applications
Author: Bor-Sen Chen
Publisher: CRC Press
ISBN: 0429780516
Category : Mathematics
Languages : en
Pages : 611
Book Description
Game theory involves multi-person decision making and differential dynamic game theory has been widely applied to n-person decision making problems, which are stimulated by a vast number of applications. This book addresses the gap to discuss general stochastic n-person noncooperative and cooperative game theory with wide applications to control systems, signal processing systems, communication systems, managements, financial systems, and biological systems. H∞ game strategy, n-person cooperative and noncooperative game strategy are discussed for linear and nonlinear stochastic systems along with some computational algorithms developed to efficiently solve these game strategies.
Publisher: CRC Press
ISBN: 0429780516
Category : Mathematics
Languages : en
Pages : 611
Book Description
Game theory involves multi-person decision making and differential dynamic game theory has been widely applied to n-person decision making problems, which are stimulated by a vast number of applications. This book addresses the gap to discuss general stochastic n-person noncooperative and cooperative game theory with wide applications to control systems, signal processing systems, communication systems, managements, financial systems, and biological systems. H∞ game strategy, n-person cooperative and noncooperative game strategy are discussed for linear and nonlinear stochastic systems along with some computational algorithms developed to efficiently solve these game strategies.
A Course in Stochastic Game Theory
Author: Eilon Solan
Publisher: Cambridge University Press
ISBN: 1316516334
Category : Business & Economics
Languages : en
Pages : 279
Book Description
This book for beginning graduate students presents a course on stochastic games and the mathematical methods used in their analysis.
Publisher: Cambridge University Press
ISBN: 1316516334
Category : Business & Economics
Languages : en
Pages : 279
Book Description
This book for beginning graduate students presents a course on stochastic games and the mathematical methods used in their analysis.
Stochastic Games and Related Concepts
Author: T. Parthasarathy
Publisher: Springer Nature
ISBN: 9811565775
Category : Mathematics
Languages : en
Pages : 127
Book Description
This book discusses stochastic game theory and related concepts. Topics focused upon in the book include matrix games, finite, infinite, and undiscounted stochastic games, n-player cooperative games, minimax theorem, and more. In addition to important definitions and theorems, the book provides readers with a range of problem-solving techniques and exercises. This book is of value to graduate students and readers of probability and statistics alike.
Publisher: Springer Nature
ISBN: 9811565775
Category : Mathematics
Languages : en
Pages : 127
Book Description
This book discusses stochastic game theory and related concepts. Topics focused upon in the book include matrix games, finite, infinite, and undiscounted stochastic games, n-player cooperative games, minimax theorem, and more. In addition to important definitions and theorems, the book provides readers with a range of problem-solving techniques and exercises. This book is of value to graduate students and readers of probability and statistics alike.
Stochastic Differential Games. Theory and Applications
Author: Kandethody M. Ramachandran
Publisher: Springer Science & Business Media
ISBN: 9491216473
Category : Mathematics
Languages : en
Pages : 253
Book Description
The subject theory is important in finance, economics, investment strategies, health sciences, environment, industrial engineering, etc.
Publisher: Springer Science & Business Media
ISBN: 9491216473
Category : Mathematics
Languages : en
Pages : 253
Book Description
The subject theory is important in finance, economics, investment strategies, health sciences, environment, industrial engineering, etc.
Probabilistic Theory of Mean Field Games with Applications I
Author: René Carmona
Publisher: Springer
ISBN: 3319589202
Category : Mathematics
Languages : en
Pages : 728
Book Description
This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illustrations of games with a finite number of players, and ending with ready-for-use solvability results. Readers are provided with the tools necessary for the solution of forward-backward stochastic differential equations of the McKean-Vlasov type at the core of the probabilistic approach. The second half of this volume focuses on the main principles of analysis on the Wasserstein space. It includes Lions' approach to the Wasserstein differential calculus, and the applications of its results to the analysis of stochastic mean field control problems. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different access points for different readers and building up the level of technical detail. The accessible approach and overview will allow interested researchers in the applied sciences to obtain a clear overview of the state of the art in mean field games.
Publisher: Springer
ISBN: 3319589202
Category : Mathematics
Languages : en
Pages : 728
Book Description
This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illustrations of games with a finite number of players, and ending with ready-for-use solvability results. Readers are provided with the tools necessary for the solution of forward-backward stochastic differential equations of the McKean-Vlasov type at the core of the probabilistic approach. The second half of this volume focuses on the main principles of analysis on the Wasserstein space. It includes Lions' approach to the Wasserstein differential calculus, and the applications of its results to the analysis of stochastic mean field control problems. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different access points for different readers and building up the level of technical detail. The accessible approach and overview will allow interested researchers in the applied sciences to obtain a clear overview of the state of the art in mean field games.
Advances in Dynamic Games
Author: Pierre Cardaliaguet
Publisher: Springer Science & Business Media
ISBN: 0817683550
Category : Mathematics
Languages : en
Pages : 421
Book Description
This book focuses on various aspects of dynamic game theory, presenting state-of-the-art research and serving as a testament to the vitality and growth of the field of dynamic games and their applications. Its contributions, written by experts in their respective disciplines, are outgrowths of presentations originally given at the 14th International Symposium of Dynamic Games and Applications held in Banff. Advances in Dynamic Games covers a variety of topics, ranging from evolutionary games, theoretical developments in game theory and algorithmic methods to applications, examples, and analysis in fields as varied as mathematical biology, environmental management, finance and economics, engineering, guidance and control, and social interaction. Featured throughout are valuable tools and resources for researchers, practitioners, and graduate students interested in dynamic games and their applications to mathematics, engineering, economics, and management science.
Publisher: Springer Science & Business Media
ISBN: 0817683550
Category : Mathematics
Languages : en
Pages : 421
Book Description
This book focuses on various aspects of dynamic game theory, presenting state-of-the-art research and serving as a testament to the vitality and growth of the field of dynamic games and their applications. Its contributions, written by experts in their respective disciplines, are outgrowths of presentations originally given at the 14th International Symposium of Dynamic Games and Applications held in Banff. Advances in Dynamic Games covers a variety of topics, ranging from evolutionary games, theoretical developments in game theory and algorithmic methods to applications, examples, and analysis in fields as varied as mathematical biology, environmental management, finance and economics, engineering, guidance and control, and social interaction. Featured throughout are valuable tools and resources for researchers, practitioners, and graduate students interested in dynamic games and their applications to mathematics, engineering, economics, and management science.
Stochastic and Differential Games
Author: Martino Bardi
Publisher: Springer Science & Business Media
ISBN: 9780817640293
Category : Mathematics
Languages : en
Pages : 404
Book Description
The theory of two-person, zero-sum differential games started at the be ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.
Publisher: Springer Science & Business Media
ISBN: 9780817640293
Category : Mathematics
Languages : en
Pages : 404
Book Description
The theory of two-person, zero-sum differential games started at the be ginning of the 1960s with the works of R. Isaacs in the United States and L. S. Pontryagin and his school in the former Soviet Union. Isaacs based his work on the Dynamic Programming method. He analyzed many special cases of the partial differential equation now called Hamilton Jacobi-Isaacs-briefiy HJI-trying to solve them explicitly and synthe sizing optimal feedbacks from the solution. He began a study of singular surfaces that was continued mainly by J. Breakwell and P. Bernhard and led to the explicit solution of some low-dimensional but highly nontriv ial games; a recent survey of this theory can be found in the book by J. Lewin entitled Differential Games (Springer, 1994). Since the early stages of the theory, several authors worked on making the notion of value of a differential game precise and providing a rigorous derivation of the HJI equation, which does not have a classical solution in most cases; we mention here the works of W. Fleming, A. Friedman (see his book, Differential Games, Wiley, 1971), P. P. Varaiya, E. Roxin, R. J. Elliott and N. J. Kalton, N. N. Krasovskii, and A. I. Subbotin (see their book Po sitional Differential Games, Nauka, 1974, and Springer, 1988), and L. D. Berkovitz. A major breakthrough was the introduction in the 1980s of two new notions of generalized solution for Hamilton-Jacobi equations, namely, viscosity solutions, by M. G. Crandall and P. -L.
Probabilistic Theory of Mean Field Games with Applications II
Author: René Carmona
Publisher: Springer
ISBN: 3319564366
Category : Mathematics
Languages : en
Pages : 712
Book Description
This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume II tackles the analysis of mean field games in which the players are affected by a common source of noise. The first part of the volume introduces and studies the concepts of weak and strong equilibria, and establishes general solvability results. The second part is devoted to the study of the master equation, a partial differential equation satisfied by the value function of the game over the space of probability measures. Existence of viscosity and classical solutions are proven and used to study asymptotics of games with finitely many players. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different access points for different readers and building up the level of technical detail. The accessible approach and overview will allow interested researchers in the applied sciences to obtain a clear overview of the state of the art in mean field games.
Publisher: Springer
ISBN: 3319564366
Category : Mathematics
Languages : en
Pages : 712
Book Description
This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume II tackles the analysis of mean field games in which the players are affected by a common source of noise. The first part of the volume introduces and studies the concepts of weak and strong equilibria, and establishes general solvability results. The second part is devoted to the study of the master equation, a partial differential equation satisfied by the value function of the game over the space of probability measures. Existence of viscosity and classical solutions are proven and used to study asymptotics of games with finitely many players. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different access points for different readers and building up the level of technical detail. The accessible approach and overview will allow interested researchers in the applied sciences to obtain a clear overview of the state of the art in mean field games.
Stochastic Differential Equations and Applications
Author: Avner Friedman
Publisher: Academic Press
ISBN: 1483217876
Category : Mathematics
Languages : en
Pages : 248
Book Description
Stochastic Differential Equations and Applications, Volume 1 covers the development of the basic theory of stochastic differential equation systems. This volume is divided into nine chapters. Chapters 1 to 5 deal with the basic theory of stochastic differential equations, including discussions of the Markov processes, Brownian motion, and the stochastic integral. Chapter 6 examines the connections between solutions of partial differential equations and stochastic differential equations, while Chapter 7 describes the Girsanov's formula that is useful in the stochastic control theory. Chapters 8 and 9 evaluate the behavior of sample paths of the solution of a stochastic differential system, as time increases to infinity. This book is intended primarily for undergraduate and graduate mathematics students.
Publisher: Academic Press
ISBN: 1483217876
Category : Mathematics
Languages : en
Pages : 248
Book Description
Stochastic Differential Equations and Applications, Volume 1 covers the development of the basic theory of stochastic differential equation systems. This volume is divided into nine chapters. Chapters 1 to 5 deal with the basic theory of stochastic differential equations, including discussions of the Markov processes, Brownian motion, and the stochastic integral. Chapter 6 examines the connections between solutions of partial differential equations and stochastic differential equations, while Chapter 7 describes the Girsanov's formula that is useful in the stochastic control theory. Chapters 8 and 9 evaluate the behavior of sample paths of the solution of a stochastic differential system, as time increases to infinity. This book is intended primarily for undergraduate and graduate mathematics students.