Author: Douglas Henderson
Publisher: World Scientific
ISBN: 9814480533
Category : Science
Languages : en
Pages : 240
Book Description
Traditionally, non-quantum physics has been concerned with deterministic equations where the dynamics of the system are completely determined by initial conditions. A century ago the discovery of Brownian motion showed that nature need not be deterministic. However, it is only recently that there has been broad interest in nondeterministic and even chaotic systems, not only in physics but in ecology and economics. On a short term basis, the stock market is nondeterministic and often chaotic. Despite its significance, there are few books available that introduce the reader to modern ideas in stochastic systems. This book provides an introduction to this increasingly important field and includes a number of interesting applications.
Stochastic Differential Equations In Science And Engineering (With Cd-rom)
Author: Douglas Henderson
Publisher: World Scientific
ISBN: 9814480533
Category : Science
Languages : en
Pages : 240
Book Description
Traditionally, non-quantum physics has been concerned with deterministic equations where the dynamics of the system are completely determined by initial conditions. A century ago the discovery of Brownian motion showed that nature need not be deterministic. However, it is only recently that there has been broad interest in nondeterministic and even chaotic systems, not only in physics but in ecology and economics. On a short term basis, the stock market is nondeterministic and often chaotic. Despite its significance, there are few books available that introduce the reader to modern ideas in stochastic systems. This book provides an introduction to this increasingly important field and includes a number of interesting applications.
Publisher: World Scientific
ISBN: 9814480533
Category : Science
Languages : en
Pages : 240
Book Description
Traditionally, non-quantum physics has been concerned with deterministic equations where the dynamics of the system are completely determined by initial conditions. A century ago the discovery of Brownian motion showed that nature need not be deterministic. However, it is only recently that there has been broad interest in nondeterministic and even chaotic systems, not only in physics but in ecology and economics. On a short term basis, the stock market is nondeterministic and often chaotic. Despite its significance, there are few books available that introduce the reader to modern ideas in stochastic systems. This book provides an introduction to this increasingly important field and includes a number of interesting applications.
Big Data in Omics and Imaging
Author: Momiao Xiong
Publisher: CRC Press
ISBN: 135117262X
Category : Mathematics
Languages : en
Pages : 580
Book Description
Big Data in Omics and Imaging: Integrated Analysis and Causal Inference addresses the recent development of integrated genomic, epigenomic and imaging data analysis and causal inference in big data era. Despite significant progress in dissecting the genetic architecture of complex diseases by genome-wide association studies (GWAS), genome-wide expression studies (GWES), and epigenome-wide association studies (EWAS), the overall contribution of the new identified genetic variants is small and a large fraction of genetic variants is still hidden. Understanding the etiology and causal chain of mechanism underlying complex diseases remains elusive. It is time to bring big data, machine learning and causal revolution to developing a new generation of genetic analysis for shifting the current paradigm of genetic analysis from shallow association analysis to deep causal inference and from genetic analysis alone to integrated omics and imaging data analysis for unraveling the mechanism of complex diseases. FEATURES Provides a natural extension and companion volume to Big Data in Omic and Imaging: Association Analysis, but can be read independently. Introduce causal inference theory to genomic, epigenomic and imaging data analysis Develop novel statistics for genome-wide causation studies and epigenome-wide causation studies. Bridge the gap between the traditional association analysis and modern causation analysis Use combinatorial optimization methods and various causal models as a general framework for inferring multilevel omic and image causal networks Present statistical methods and computational algorithms for searching causal paths from genetic variant to disease Develop causal machine learning methods integrating causal inference and machine learning Develop statistics for testing significant difference in directed edge, path, and graphs, and for assessing causal relationships between two networks The book is designed for graduate students and researchers in genomics, epigenomics, medical image, bioinformatics, and data science. Topics covered are: mathematical formulation of causal inference, information geometry for causal inference, topology group and Haar measure, additive noise models, distance correlation, multivariate causal inference and causal networks, dynamic causal networks, multivariate and functional structural equation models, mixed structural equation models, causal inference with confounders, integer programming, deep learning and differential equations for wearable computing, genetic analysis of function-valued traits, RNA-seq data analysis, causal networks for genetic methylation analysis, gene expression and methylation deconvolution, cell –specific causal networks, deep learning for image segmentation and image analysis, imaging and genomic data analysis, integrated multilevel causal genomic, epigenomic and imaging data analysis.
Publisher: CRC Press
ISBN: 135117262X
Category : Mathematics
Languages : en
Pages : 580
Book Description
Big Data in Omics and Imaging: Integrated Analysis and Causal Inference addresses the recent development of integrated genomic, epigenomic and imaging data analysis and causal inference in big data era. Despite significant progress in dissecting the genetic architecture of complex diseases by genome-wide association studies (GWAS), genome-wide expression studies (GWES), and epigenome-wide association studies (EWAS), the overall contribution of the new identified genetic variants is small and a large fraction of genetic variants is still hidden. Understanding the etiology and causal chain of mechanism underlying complex diseases remains elusive. It is time to bring big data, machine learning and causal revolution to developing a new generation of genetic analysis for shifting the current paradigm of genetic analysis from shallow association analysis to deep causal inference and from genetic analysis alone to integrated omics and imaging data analysis for unraveling the mechanism of complex diseases. FEATURES Provides a natural extension and companion volume to Big Data in Omic and Imaging: Association Analysis, but can be read independently. Introduce causal inference theory to genomic, epigenomic and imaging data analysis Develop novel statistics for genome-wide causation studies and epigenome-wide causation studies. Bridge the gap between the traditional association analysis and modern causation analysis Use combinatorial optimization methods and various causal models as a general framework for inferring multilevel omic and image causal networks Present statistical methods and computational algorithms for searching causal paths from genetic variant to disease Develop causal machine learning methods integrating causal inference and machine learning Develop statistics for testing significant difference in directed edge, path, and graphs, and for assessing causal relationships between two networks The book is designed for graduate students and researchers in genomics, epigenomics, medical image, bioinformatics, and data science. Topics covered are: mathematical formulation of causal inference, information geometry for causal inference, topology group and Haar measure, additive noise models, distance correlation, multivariate causal inference and causal networks, dynamic causal networks, multivariate and functional structural equation models, mixed structural equation models, causal inference with confounders, integer programming, deep learning and differential equations for wearable computing, genetic analysis of function-valued traits, RNA-seq data analysis, causal networks for genetic methylation analysis, gene expression and methylation deconvolution, cell –specific causal networks, deep learning for image segmentation and image analysis, imaging and genomic data analysis, integrated multilevel causal genomic, epigenomic and imaging data analysis.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 916
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 916
Book Description
Mathematical Modelling in Engineering & Human Behaviour 2018
Author: Lucas Jódar
Publisher: MDPI
ISBN: 3038978043
Category : Mathematics
Languages : en
Pages : 196
Book Description
This book includes papers in cross-disciplinary applications of mathematical modelling: from medicine to linguistics, social problems, and more. Based on cutting-edge research, each chapter is focused on a different problem of modelling human behaviour or engineering problems at different levels. The reader would find this book to be a useful reference in identifying problems of interest in social, medicine and engineering sciences, and in developing mathematical models that could be used to successfully predict behaviours and obtain practical information for specialised practitioners. This book is a must-read for anyone interested in the new developments of applied mathematics in connection with epidemics, medical modelling, social issues, random differential equations and numerical methods.
Publisher: MDPI
ISBN: 3038978043
Category : Mathematics
Languages : en
Pages : 196
Book Description
This book includes papers in cross-disciplinary applications of mathematical modelling: from medicine to linguistics, social problems, and more. Based on cutting-edge research, each chapter is focused on a different problem of modelling human behaviour or engineering problems at different levels. The reader would find this book to be a useful reference in identifying problems of interest in social, medicine and engineering sciences, and in developing mathematical models that could be used to successfully predict behaviours and obtain practical information for specialised practitioners. This book is a must-read for anyone interested in the new developments of applied mathematics in connection with epidemics, medical modelling, social issues, random differential equations and numerical methods.
Software Reliability Modeling
Author: Shigeru Yamada
Publisher: Springer Science & Business Media
ISBN: 4431545654
Category : Mathematics
Languages : en
Pages : 98
Book Description
Software reliability is one of the most important characteristics of software product quality. Its measurement and management technologies during the software product life cycle are essential to produce and maintain quality/reliable software systems. Part 1 of this book introduces several aspects of software reliability modeling and its applications. Hazard rate and nonhomogeneous Poisson process (NHPP) models are investigated particularly for quantitative software reliability assessment. Further, imperfect debugging and software availability models are discussed with reference to incorporating practical factors of dynamic software behavior. Three software management problems are presented as application technologies of software reliability models: the optimal software release problem, the statistical testing-progress control, and the optimal testing-effort allocation problem. Part 2 of the book describes several recent developments in software reliability modeling and their applications as quantitative techniques for software quality/reliability measurement and assessment. The discussion includes a quality engineering analysis of human factors affecting software reliability during the design review phase, which is the upper stream of software development, as well as software reliability growth models based on stochastic differential equations and discrete calculus during the testing phase, which is the lower stream. The final part of the book provides an illustration of quality-oriented software management analysis by applying the multivariate analysis method and the existing software reliability growth models to actual process monitoring data.
Publisher: Springer Science & Business Media
ISBN: 4431545654
Category : Mathematics
Languages : en
Pages : 98
Book Description
Software reliability is one of the most important characteristics of software product quality. Its measurement and management technologies during the software product life cycle are essential to produce and maintain quality/reliable software systems. Part 1 of this book introduces several aspects of software reliability modeling and its applications. Hazard rate and nonhomogeneous Poisson process (NHPP) models are investigated particularly for quantitative software reliability assessment. Further, imperfect debugging and software availability models are discussed with reference to incorporating practical factors of dynamic software behavior. Three software management problems are presented as application technologies of software reliability models: the optimal software release problem, the statistical testing-progress control, and the optimal testing-effort allocation problem. Part 2 of the book describes several recent developments in software reliability modeling and their applications as quantitative techniques for software quality/reliability measurement and assessment. The discussion includes a quality engineering analysis of human factors affecting software reliability during the design review phase, which is the upper stream of software development, as well as software reliability growth models based on stochastic differential equations and discrete calculus during the testing phase, which is the lower stream. The final part of the book provides an illustration of quality-oriented software management analysis by applying the multivariate analysis method and the existing software reliability growth models to actual process monitoring data.
Intelligent Automation and Systems Engineering
Author: Sio-Iong Ao
Publisher: Springer Science & Business Media
ISBN: 1461403731
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
Intelligent systems are required to facilitate the use of information provided by the internet and other computer based technologies. This book describes the state-of-the-art in Intelligent Automation and Systems Engineering. Topics covered include Intelligent decision making, Automation, Robotics, Expert systems, Fuzzy systems, Knowledge-based systems, Knowledge extraction, Large database management, Data analysis tools, Computational biology, Optimization algorithms, Experimental designs, Complex system identification, Computational modeling, Systems simulation, Decision modeling, and industrial applications.
Publisher: Springer Science & Business Media
ISBN: 1461403731
Category : Technology & Engineering
Languages : en
Pages : 421
Book Description
Intelligent systems are required to facilitate the use of information provided by the internet and other computer based technologies. This book describes the state-of-the-art in Intelligent Automation and Systems Engineering. Topics covered include Intelligent decision making, Automation, Robotics, Expert systems, Fuzzy systems, Knowledge-based systems, Knowledge extraction, Large database management, Data analysis tools, Computational biology, Optimization algorithms, Experimental designs, Complex system identification, Computational modeling, Systems simulation, Decision modeling, and industrial applications.
Applied Stochastic Differential Equations
Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327
Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Stochastic Reliability and Maintenance Modeling
Author: Tadashi Dohi
Publisher: Springer Science & Business Media
ISBN: 1447149718
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
In honor of the work of Professor Shunji Osaki, Stochastic Reliability and Maintenance Modeling provides a comprehensive study of the legacy of and ongoing research in stochastic reliability and maintenance modeling. Including associated application areas such as dependable computing, performance evaluation, software engineering, communication engineering, distinguished researchers review and build on the contributions over the last four decades by Professor Shunji Osaki. Fundamental yet significant research results are presented and discussed clearly alongside new ideas and topics on stochastic reliability and maintenance modeling to inspire future research. Across 15 chapters readers gain the knowledge and understanding to apply reliability and maintenance theory to computer and communication systems. Stochastic Reliability and Maintenance Modeling is ideal for graduate students and researchers in reliability engineering, and workers, managers and engineers engaged in computer, maintenance and management works.
Publisher: Springer Science & Business Media
ISBN: 1447149718
Category : Technology & Engineering
Languages : en
Pages : 375
Book Description
In honor of the work of Professor Shunji Osaki, Stochastic Reliability and Maintenance Modeling provides a comprehensive study of the legacy of and ongoing research in stochastic reliability and maintenance modeling. Including associated application areas such as dependable computing, performance evaluation, software engineering, communication engineering, distinguished researchers review and build on the contributions over the last four decades by Professor Shunji Osaki. Fundamental yet significant research results are presented and discussed clearly alongside new ideas and topics on stochastic reliability and maintenance modeling to inspire future research. Across 15 chapters readers gain the knowledge and understanding to apply reliability and maintenance theory to computer and communication systems. Stochastic Reliability and Maintenance Modeling is ideal for graduate students and researchers in reliability engineering, and workers, managers and engineers engaged in computer, maintenance and management works.
Computational Engineering
Author: Günter Hofstetter
Publisher: Springer
ISBN: 3319059335
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
The book presents state-of-the-art works in computational engineering. Focus is on mathematical modeling, numerical simulation, experimental validation and visualization in engineering sciences. In particular, the following topics are presented: constitutive models and their implementation into finite element codes, numerical models in nonlinear elasto-dynamics including seismic excitations, multiphase models in structural engineering and multiscale models of materials systems, sensitivity and reliability analysis of engineering structures, the application of scientific computing in urban water management and hydraulic engineering, and the application of genetic algorithms for the registration of laser scanner point clouds.
Publisher: Springer
ISBN: 3319059335
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
The book presents state-of-the-art works in computational engineering. Focus is on mathematical modeling, numerical simulation, experimental validation and visualization in engineering sciences. In particular, the following topics are presented: constitutive models and their implementation into finite element codes, numerical models in nonlinear elasto-dynamics including seismic excitations, multiphase models in structural engineering and multiscale models of materials systems, sensitivity and reliability analysis of engineering structures, the application of scientific computing in urban water management and hydraulic engineering, and the application of genetic algorithms for the registration of laser scanner point clouds.
Feedback Systems
Author: Karl Johan Åström
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages :
Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages :
Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory