Statistics in Theory and Practice

Statistics in Theory and Practice PDF Author: Robert Lupton
Publisher: Princeton University Press
ISBN: 0691213194
Category : Mathematics
Languages : en
Pages : 200

Get Book Here

Book Description
Aimed at a diverse scientific audience, including physicists, astronomers, chemists, geologists, and economists, this book explains the theory underlying the classical statistical methods. Its level is between introductory "how to" texts and intimidating mathematical monographs. A reader without previous exposure to statistics will finish the book with a sound working knowledge of statistical methods, while a reader already familiar with the standard tests will come away with an understanding of their strengths, weaknesses, and domains of applicability. The mathematical level is that of an advanced undergraduate; for example, matrices and Fourier analysis are used where appropriate. Among the topics covered are common probability distributions; sampling and the distribution of sampling statistics; confidence intervals, hypothesis testing, and the theory of tests; estimation (including maximum likelihood); goodness of fit (including c2 and Kolmogorov-Smirnov tests); and non-parametric and rank tests. There are nearly one hundred problems (with answers) designed to bring out points in the text and to cover topics slightly outside the main line of development.

Statistics in Theory and Practice

Statistics in Theory and Practice PDF Author: Robert Lupton
Publisher: Princeton University Press
ISBN: 0691213194
Category : Mathematics
Languages : en
Pages : 200

Get Book Here

Book Description
Aimed at a diverse scientific audience, including physicists, astronomers, chemists, geologists, and economists, this book explains the theory underlying the classical statistical methods. Its level is between introductory "how to" texts and intimidating mathematical monographs. A reader without previous exposure to statistics will finish the book with a sound working knowledge of statistical methods, while a reader already familiar with the standard tests will come away with an understanding of their strengths, weaknesses, and domains of applicability. The mathematical level is that of an advanced undergraduate; for example, matrices and Fourier analysis are used where appropriate. Among the topics covered are common probability distributions; sampling and the distribution of sampling statistics; confidence intervals, hypothesis testing, and the theory of tests; estimation (including maximum likelihood); goodness of fit (including c2 and Kolmogorov-Smirnov tests); and non-parametric and rank tests. There are nearly one hundred problems (with answers) designed to bring out points in the text and to cover topics slightly outside the main line of development.

Statistics (Theory & Practice)

Statistics (Theory & Practice) PDF Author: R S N Pillai
Publisher: S. Chand Publishing
ISBN: 8121904315
Category : Technology & Engineering
Languages : en
Pages : 888

Get Book Here

Book Description
This book faciliates easy understanding of the matter without any tediousness in grasping the theories and illustrations.This book is completed in respect of the syllabus for B.Com and B.A.(Eco) degrees (Semester and Non-Semester) of Madurai Kamaraj University.Every effort has been made to give illustrations for lucidit. Every chapter explains the principles through appropiate illustrations.At the end of each chapter selected exercises from different university papers have been included alongwith answers.This book covers theortical, practical and applied aspects of statistics as far as possible in a clear and exhaustive manner. This book contains 553 solved illustrations, 442 Objective Type Questions, 264 theortical questions and 1,000 practical problems with appropiate answers.

Statistical Models

Statistical Models PDF Author: David A. Freedman
Publisher: Cambridge University Press
ISBN: 1139477315
Category : Mathematics
Languages : en
Pages : 459

Get Book Here

Book Description
This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.

U-Statistics

U-Statistics PDF Author: A J. Lee
Publisher: Routledge
ISBN: 1351405853
Category : Mathematics
Languages : en
Pages : 324

Get Book Here

Book Description
In 1946 Paul Halmos studied unbiased estimators of minimum variance, and planted the seed from which the subject matter of the present monograph sprang. The author has undertaken to provide experts and advanced students with a review of the present status of the evolved theory of U-statistics, including applications to indicate the range and scope of U-statistic methods. Complete with over 200 end-of-chapter references, this is an invaluable addition to the libraries of applied and theoretical statisticians and mathematicians.

Sampling Theory and Practice

Sampling Theory and Practice PDF Author: Changbao Wu
Publisher: Springer Nature
ISBN: 3030442462
Category : Social Science
Languages : en
Pages : 371

Get Book Here

Book Description
The three parts of this book on survey methodology combine an introduction to basic sampling theory, engaging presentation of topics that reflect current research trends, and informed discussion of the problems commonly encountered in survey practice. These related aspects of survey methodology rarely appear together under a single connected roof, making this book a unique combination of materials for teaching, research and practice in survey sampling. Basic knowledge of probability theory and statistical inference is assumed, but no prior exposure to survey sampling is required. The first part focuses on the design-based approach to finite population sampling. It contains a rigorous coverage of basic sampling designs, related estimation theory, model-based prediction approach, and model-assisted estimation methods. The second part stems from original research conducted by the authors as well as important methodological advances in the field during the past three decades. Topics include calibration weighting methods, regression analysis and survey weighted estimating equation (EE) theory, longitudinal surveys and generalized estimating equations (GEE) analysis, variance estimation and resampling techniques, empirical likelihood methods for complex surveys, handling missing data and non-response, and Bayesian inference for survey data. The third part provides guidance and tools on practical aspects of large-scale surveys, such as training and quality control, frame construction, choices of survey designs, strategies for reducing non-response, and weight calculation. These procedures are illustrated through real-world surveys. Several specialized topics are also discussed in detail, including household surveys, telephone and web surveys, natural resource inventory surveys, adaptive and network surveys, dual-frame and multiple frame surveys, and analysis of non-probability survey samples. This book is a self-contained introduction to survey sampling that provides a strong theoretical base with coverage of current research trends and pragmatic guidance and tools for conducting surveys.

Statistical Methods for Organizational Research

Statistical Methods for Organizational Research PDF Author: Chris Dewberry
Publisher: Routledge
ISBN: 1134314345
Category : Business & Economics
Languages : en
Pages : 365

Get Book Here

Book Description
This clearly written textbook clarifies the ideas underpinning descriptive and inferential statistics in organizational research. Much more than a theoretical reference tool, it guides readers through the various key stages of successful data analysis.

Theory and Methods of Statistics

Theory and Methods of Statistics PDF Author: P.K. Bhattacharya
Publisher: Academic Press
ISBN: 0128041234
Category : Mathematics
Languages : en
Pages : 546

Get Book Here

Book Description
Theory and Methods of Statistics covers essential topics for advanced graduate students and professional research statisticians. This comprehensive resource covers many important areas in one manageable volume, including core subjects such as probability theory, mathematical statistics, and linear models, and various special topics, including nonparametrics, curve estimation, multivariate analysis, time series, and resampling. The book presents subjects such as "maximum likelihood and sufficiency," and is written with an intuitive, heuristic approach to build reader comprehension. It also includes many probability inequalities that are not only useful in the context of this text, but also as a resource for investigating convergence of statistical procedures. - Codifies foundational information in many core areas of statistics into a comprehensive and definitive resource - Serves as an excellent text for select master's and PhD programs, as well as a professional reference - Integrates numerous examples to illustrate advanced concepts - Includes many probability inequalities useful for investigating convergence of statistical procedures

Statistical Matching

Statistical Matching PDF Author: Marcello D'Orazio
Publisher: John Wiley & Sons
ISBN: 0470023546
Category : Mathematics
Languages : en
Pages : 268

Get Book Here

Book Description
There is more statistical data produced in today’s modern society than ever before. This data is analysed and cross-referenced for innumerable reasons. However, many data sets have no shared element and are harder to combine and therefore obtain any meaningful inference from. Statistical matching allows just that; it is the art of combining information from different sources (particularly sample surveys) that contain no common unit. In response to modern influxes of data, it is an area of rapidly growing interest and complexity. Statistical Matching: Theory and Practice introduces the basics of statistical matching, before going on to offer a detailed, up-to-date overview of the methods used and an examination of their practical applications. Presents a unified framework for both theoretical and practical aspects of statistical matching. Provides a detailed description covering all the steps needed to perform statistical matching. Contains a critical overview of the available statistical matching methods. Discusses all the major issues in detail, such as the Conditional Independence Assumption and the assessment of uncertainty. Includes numerous examples and applications, enabling the reader to apply the methods in their own work. Features an appendix detailing algorithms written in the R language. Statistical Matching: Theory and Practice presents a comprehensive exploration of an increasingly important area. Ideal for researchers in national statistics institutes and applied statisticians, it will also prove to be an invaluable text for scientists and researchers from all disciplines engaged in the multivariate analysis of data collected from different sources.

Data Science in Theory and Practice

Data Science in Theory and Practice PDF Author: Maria Cristina Mariani
Publisher: John Wiley & Sons
ISBN: 1119674689
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description
DATA SCIENCE IN THEORY AND PRACTICE EXPLORE THE FOUNDATIONS OF DATA SCIENCE WITH THIS INSIGHTFUL NEW RESOURCE Data Science in Theory and Practice delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs, Data Science in Theory and Practice will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.

Robust Statistics

Robust Statistics PDF Author: Ricardo A. Maronna
Publisher: John Wiley & Sons
ISBN: 1119214688
Category : Mathematics
Languages : en
Pages : 466

Get Book Here

Book Description
A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.