Author: Ai Publishing
Publisher:
ISBN: 9781734790160
Category :
Languages : en
Pages : 330
Book Description
Frequentist and Bayesian Statistics Crash Course for Beginners Data and statistics are the core subjects of Machine Learning (ML). The reality is the average programmer may be tempted to view statistics with disinterest. But if you want to exploit the incredible power of Machine Learning, you need a thorough understanding of statistics. The reason is a Machine Learning professional develops intelligent and fast algorithms that learn from data. Frequentist and Bayesian Statistics Crash Course for Beginners presents you with an easy way of learning statistics fast. Contrary to popular belief, statistics is no longer the exclusive domain of math Ph.D.s. It's true that statistics deals with numbers and percentages. Hence, the subject can be very dry and boring. This book, however, transforms statistics into a fun subject. Frequentist and Bayesian statistics are two statistical techniques that interpret the concept of probability in different ways. Bayesian statistics was first introduced by Thomas Bayes in the 1770s. Bayesian statistics has been instrumental in the design of high-end algorithms that make accurate predictions. So even after 250 years, the interest in Bayesian statistics has not faded. In fact, it has accelerated tremendously. Frequentist Statistics is just as important as Bayesian Statistics. In the statistical universe, Frequentist Statistics is the most popular inferential technique. In fact, it's the first school of thought you come across when you enter the statistics world. How Is This Book Different? AI Publishing is completely sold on the learning by doing methodology. We have gone to great lengths to ensure you find learning statistics easy. The result: you will not get stuck along your learning journey. This is not a book full of complex mathematical concepts and difficult equations. You will find that the coverage of the theoretical aspects of statistics is proportionate to the practical aspects of the subject. The book makes the reading process easier by presenting you with three types of box-tags in different colors. They are: Requirements, Further Readings, and Hands-on Time. The final chapter presents two mini-projects to give you a better understanding of the concepts you studied in the previous eight chapters. The main feature is you get instant access to a treasure trove of all the related learning material when you buy this book. They include PDFs, Python codes, exercises, and references--on the publisher's website. You get access to all this learning material at no extra cost. You can also download the Machine Learning datasets used in this book at runtime. Alternatively, you can access them through the Resources/Datasets folder. The quick course on Python programming in the first chapter will be immensely helpful, especially if you are new to Python. Since you can access all the Python codes and datasets, a computer with the internet is sufficient to get started. The topics covered include: A Quick Introduction to Python for Statistics Starting with Probability Random Variables and Probability Distributions Descriptive Statistics: Measure of Central Tendency and Spread Exploratory Analysis: Data Visualization Statistical Inference Frequentist Inference Bayesian Inference Hands-on Projects Click the BUY NOW button and start your Statistics Learning journey.
Statistics Crash Course for Beginners
Author: Ai Publishing
Publisher:
ISBN: 9781734790160
Category :
Languages : en
Pages : 330
Book Description
Frequentist and Bayesian Statistics Crash Course for Beginners Data and statistics are the core subjects of Machine Learning (ML). The reality is the average programmer may be tempted to view statistics with disinterest. But if you want to exploit the incredible power of Machine Learning, you need a thorough understanding of statistics. The reason is a Machine Learning professional develops intelligent and fast algorithms that learn from data. Frequentist and Bayesian Statistics Crash Course for Beginners presents you with an easy way of learning statistics fast. Contrary to popular belief, statistics is no longer the exclusive domain of math Ph.D.s. It's true that statistics deals with numbers and percentages. Hence, the subject can be very dry and boring. This book, however, transforms statistics into a fun subject. Frequentist and Bayesian statistics are two statistical techniques that interpret the concept of probability in different ways. Bayesian statistics was first introduced by Thomas Bayes in the 1770s. Bayesian statistics has been instrumental in the design of high-end algorithms that make accurate predictions. So even after 250 years, the interest in Bayesian statistics has not faded. In fact, it has accelerated tremendously. Frequentist Statistics is just as important as Bayesian Statistics. In the statistical universe, Frequentist Statistics is the most popular inferential technique. In fact, it's the first school of thought you come across when you enter the statistics world. How Is This Book Different? AI Publishing is completely sold on the learning by doing methodology. We have gone to great lengths to ensure you find learning statistics easy. The result: you will not get stuck along your learning journey. This is not a book full of complex mathematical concepts and difficult equations. You will find that the coverage of the theoretical aspects of statistics is proportionate to the practical aspects of the subject. The book makes the reading process easier by presenting you with three types of box-tags in different colors. They are: Requirements, Further Readings, and Hands-on Time. The final chapter presents two mini-projects to give you a better understanding of the concepts you studied in the previous eight chapters. The main feature is you get instant access to a treasure trove of all the related learning material when you buy this book. They include PDFs, Python codes, exercises, and references--on the publisher's website. You get access to all this learning material at no extra cost. You can also download the Machine Learning datasets used in this book at runtime. Alternatively, you can access them through the Resources/Datasets folder. The quick course on Python programming in the first chapter will be immensely helpful, especially if you are new to Python. Since you can access all the Python codes and datasets, a computer with the internet is sufficient to get started. The topics covered include: A Quick Introduction to Python for Statistics Starting with Probability Random Variables and Probability Distributions Descriptive Statistics: Measure of Central Tendency and Spread Exploratory Analysis: Data Visualization Statistical Inference Frequentist Inference Bayesian Inference Hands-on Projects Click the BUY NOW button and start your Statistics Learning journey.
Publisher:
ISBN: 9781734790160
Category :
Languages : en
Pages : 330
Book Description
Frequentist and Bayesian Statistics Crash Course for Beginners Data and statistics are the core subjects of Machine Learning (ML). The reality is the average programmer may be tempted to view statistics with disinterest. But if you want to exploit the incredible power of Machine Learning, you need a thorough understanding of statistics. The reason is a Machine Learning professional develops intelligent and fast algorithms that learn from data. Frequentist and Bayesian Statistics Crash Course for Beginners presents you with an easy way of learning statistics fast. Contrary to popular belief, statistics is no longer the exclusive domain of math Ph.D.s. It's true that statistics deals with numbers and percentages. Hence, the subject can be very dry and boring. This book, however, transforms statistics into a fun subject. Frequentist and Bayesian statistics are two statistical techniques that interpret the concept of probability in different ways. Bayesian statistics was first introduced by Thomas Bayes in the 1770s. Bayesian statistics has been instrumental in the design of high-end algorithms that make accurate predictions. So even after 250 years, the interest in Bayesian statistics has not faded. In fact, it has accelerated tremendously. Frequentist Statistics is just as important as Bayesian Statistics. In the statistical universe, Frequentist Statistics is the most popular inferential technique. In fact, it's the first school of thought you come across when you enter the statistics world. How Is This Book Different? AI Publishing is completely sold on the learning by doing methodology. We have gone to great lengths to ensure you find learning statistics easy. The result: you will not get stuck along your learning journey. This is not a book full of complex mathematical concepts and difficult equations. You will find that the coverage of the theoretical aspects of statistics is proportionate to the practical aspects of the subject. The book makes the reading process easier by presenting you with three types of box-tags in different colors. They are: Requirements, Further Readings, and Hands-on Time. The final chapter presents two mini-projects to give you a better understanding of the concepts you studied in the previous eight chapters. The main feature is you get instant access to a treasure trove of all the related learning material when you buy this book. They include PDFs, Python codes, exercises, and references--on the publisher's website. You get access to all this learning material at no extra cost. You can also download the Machine Learning datasets used in this book at runtime. Alternatively, you can access them through the Resources/Datasets folder. The quick course on Python programming in the first chapter will be immensely helpful, especially if you are new to Python. Since you can access all the Python codes and datasets, a computer with the internet is sufficient to get started. The topics covered include: A Quick Introduction to Python for Statistics Starting with Probability Random Variables and Probability Distributions Descriptive Statistics: Measure of Central Tendency and Spread Exploratory Analysis: Data Visualization Statistical Inference Frequentist Inference Bayesian Inference Hands-on Projects Click the BUY NOW button and start your Statistics Learning journey.
A Crash Course in Statistics
Author: Ryan J. Winter
Publisher: SAGE Publications
ISBN: 1544307020
Category : Social Science
Languages : en
Pages : 114
Book Description
A Crash Course in Statistics by Ryan J. Winter is a short introduction to key statistical methods including descriptive statistics, one-way and two-way ANOVA, the t-test, and Chi Square. Each of the five chapters provides an overview of each method, and then walks readers through a relevant example, using SPSS to highlight how to run the statistics and how to write up the results in APA style. Each chapter ends with a self-quiz so that readers can assess their understanding of each statistical concept. This “crash course” supplement is a must-have statistics refresher for students taking research methods classes; a handy additional reference for introductory statistics students; and a guide for anyone who needs to be a consumer of statistics.
Publisher: SAGE Publications
ISBN: 1544307020
Category : Social Science
Languages : en
Pages : 114
Book Description
A Crash Course in Statistics by Ryan J. Winter is a short introduction to key statistical methods including descriptive statistics, one-way and two-way ANOVA, the t-test, and Chi Square. Each of the five chapters provides an overview of each method, and then walks readers through a relevant example, using SPSS to highlight how to run the statistics and how to write up the results in APA style. Each chapter ends with a self-quiz so that readers can assess their understanding of each statistical concept. This “crash course” supplement is a must-have statistics refresher for students taking research methods classes; a handy additional reference for introductory statistics students; and a guide for anyone who needs to be a consumer of statistics.
All of Statistics
Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387217363
Category : Mathematics
Languages : en
Pages : 446
Book Description
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Publisher: Springer Science & Business Media
ISBN: 0387217363
Category : Mathematics
Languages : en
Pages : 446
Book Description
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
AP® Statistics Crash Course, For the 2020 Exam, Book + Online
Author: Michael D'Alessio
Publisher: Research & Education Assoc.
ISBN: 0738689246
Category : Study Aids
Languages : en
Pages : 275
Book Description
For the 2020 Exam! AP® Statistics Crash Course® A Higher Score in Less Time! Crash Course is perfect for the time-crunched student, the last-minute studier, or anyone who wants a refresher on the subject. Are you crunched for time? Have you started studying for your Advanced Placement® Statistics exam yet? How will you memorize everything you need to know before the test? Do you wish there was a fast and easy way to study for the exam AND boost your score? If this sounds like you, don't panic. REA's Crash Course for AP® Statistics is just what you need. Our Crash Course gives you: Targeted, Focused Review - Study Only What You Need to Know The Crash Course is based on an in-depth analysis of the AP® Statistics course description outline and actual AP® test questions. It covers only the information tested on the exam, so you can make the most of your valuable study time. Written by an experienced AP® Statistics teacher, our easy-to-read format gives you a crash course in exploring data, planning a study, anticipating patterns, and statistical inferences. Expert Test-taking Strategies Our AP® author shares detailed question-level strategies and explains the best way to answer the questions you’ll find on the AP® exam. By following his expert advice, you can boost your overall point score! Practice questions – a mini-test in the book, a full-length exam online. Are you ready for your exam? Try our focused practice set inside the book. Then go online to take our full-length practice exam. You’ll get the benefits of timed testing, detailed answers, and automatic scoring that pinpoints your performance based on the official AP® exam topics – so you'll be confident on test day. Whether you’re cramming for the exam or looking to recap and reinforce your teacher’s lessons, Crash Course® is the study guide every AP® student needs. About the Author Michael D’Alessio earned his B.S. in Biology from Seton Hall University and his M.S. in Biomedical Sciences from the University of Medicine and Dentistry of New Jersey. In 2004, he earned his Executive Masters of Arts in Educational Leadership from Seton Hall University. Mr. D’Alessio has had an extensive career teaching all levels of mathematics and science, including AP® statistics, chemistry, biology, physics, algebra, calculus and geometry. In 2003, Mr. D’Alessio received the Governor’s Teacher of the Year recognition for Watchung Hills Regional High School. In 2004, Mr. D’Alessio received a Certificate of Recognition of Excellence in Science Teaching from Sigma Xi, the Scientific Research Society of Rutgers University and in 2005, he was voted National Honor Society Teacher of the Year by the students of Watchung Hills. Currently, Mr. D’Alessio serves as the Supervisor of the Mathematics and Business Department at Watchung Hills Regional High School in Warren, New Jersey, overseeing 30 teachers.
Publisher: Research & Education Assoc.
ISBN: 0738689246
Category : Study Aids
Languages : en
Pages : 275
Book Description
For the 2020 Exam! AP® Statistics Crash Course® A Higher Score in Less Time! Crash Course is perfect for the time-crunched student, the last-minute studier, or anyone who wants a refresher on the subject. Are you crunched for time? Have you started studying for your Advanced Placement® Statistics exam yet? How will you memorize everything you need to know before the test? Do you wish there was a fast and easy way to study for the exam AND boost your score? If this sounds like you, don't panic. REA's Crash Course for AP® Statistics is just what you need. Our Crash Course gives you: Targeted, Focused Review - Study Only What You Need to Know The Crash Course is based on an in-depth analysis of the AP® Statistics course description outline and actual AP® test questions. It covers only the information tested on the exam, so you can make the most of your valuable study time. Written by an experienced AP® Statistics teacher, our easy-to-read format gives you a crash course in exploring data, planning a study, anticipating patterns, and statistical inferences. Expert Test-taking Strategies Our AP® author shares detailed question-level strategies and explains the best way to answer the questions you’ll find on the AP® exam. By following his expert advice, you can boost your overall point score! Practice questions – a mini-test in the book, a full-length exam online. Are you ready for your exam? Try our focused practice set inside the book. Then go online to take our full-length practice exam. You’ll get the benefits of timed testing, detailed answers, and automatic scoring that pinpoints your performance based on the official AP® exam topics – so you'll be confident on test day. Whether you’re cramming for the exam or looking to recap and reinforce your teacher’s lessons, Crash Course® is the study guide every AP® student needs. About the Author Michael D’Alessio earned his B.S. in Biology from Seton Hall University and his M.S. in Biomedical Sciences from the University of Medicine and Dentistry of New Jersey. In 2004, he earned his Executive Masters of Arts in Educational Leadership from Seton Hall University. Mr. D’Alessio has had an extensive career teaching all levels of mathematics and science, including AP® statistics, chemistry, biology, physics, algebra, calculus and geometry. In 2003, Mr. D’Alessio received the Governor’s Teacher of the Year recognition for Watchung Hills Regional High School. In 2004, Mr. D’Alessio received a Certificate of Recognition of Excellence in Science Teaching from Sigma Xi, the Scientific Research Society of Rutgers University and in 2005, he was voted National Honor Society Teacher of the Year by the students of Watchung Hills. Currently, Mr. D’Alessio serves as the Supervisor of the Mathematics and Business Department at Watchung Hills Regional High School in Warren, New Jersey, overseeing 30 teachers.
Learning Statistics with R
Author: Daniel Navarro
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617
Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617
Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
The Book of R
Author: Tilman M. Davies
Publisher: No Starch Press
ISBN: 1593276516
Category : Computers
Languages : en
Pages : 833
Book Description
The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.
Publisher: No Starch Press
ISBN: 1593276516
Category : Computers
Languages : en
Pages : 833
Book Description
The Book of R is a comprehensive, beginner-friendly guide to R, the world’s most popular programming language for statistical analysis. Even if you have no programming experience and little more than a grounding in the basics of mathematics, you’ll find everything you need to begin using R effectively for statistical analysis. You’ll start with the basics, like how to handle data and write simple programs, before moving on to more advanced topics, like producing statistical summaries of your data and performing statistical tests and modeling. You’ll even learn how to create impressive data visualizations with R’s basic graphics tools and contributed packages, like ggplot2 and ggvis, as well as interactive 3D visualizations using the rgl package. Dozens of hands-on exercises (with downloadable solutions) take you from theory to practice, as you learn: –The fundamentals of programming in R, including how to write data frames, create functions, and use variables, statements, and loops –Statistical concepts like exploratory data analysis, probabilities, hypothesis tests, and regression modeling, and how to execute them in R –How to access R’s thousands of functions, libraries, and data sets –How to draw valid and useful conclusions from your data –How to create publication-quality graphics of your results Combining detailed explanations with real-world examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R’s functionality. Make The Book of R your doorway into the growing world of data analysis.
Beyond Basic Statistics
Author: Kristin H. Jarman
Publisher: John Wiley & Sons
ISBN: 1118856120
Category : Mathematics
Languages : en
Pages : 200
Book Description
Features basic statistical concepts as a tool for thinking critically, wading through large quantities of information, and answering practical, everyday questions Written in an engaging and inviting manner, Beyond Basic Statistics: Tips, Tricks, and Techniques Every Data Analyst Should Know presents the more subjective side of statistics—the art of data analytics. Each chapter explores a different question using fun, common sense examples that illustrate the concepts, methods, and applications of statistical techniques. Without going into the specifics of theorems, propositions, or formulas, the book effectively demonstrates statistics as a useful problem-solving tool. In addition, the author demonstrates how statistics is a tool for thinking critically, wading through large volumes of information, and answering life’s important questions. Beyond Basic Statistics: Tips, Tricks, and Techniques Every Data Analyst Should Know also features: Plentiful examples throughout aimed to strengthen readers’ understanding of the statistical concepts and methods A step-by-step approach to elementary statistical topics such as sampling, hypothesis tests, outlier detection, normality tests, robust statistics, and multiple regression A case study in each chapter that illustrates the use of the presented techniques Highlights of well-known shortcomings that can lead to false conclusions An introduction to advanced techniques such as validation and bootstrapping Featuring examples that are engaging and non-application specific, the book appeals to a broad audience of students and professionals alike, specifically students of undergraduate statistics, managers, medical professionals, and anyone who has to make decisions based on raw data or compiled results.
Publisher: John Wiley & Sons
ISBN: 1118856120
Category : Mathematics
Languages : en
Pages : 200
Book Description
Features basic statistical concepts as a tool for thinking critically, wading through large quantities of information, and answering practical, everyday questions Written in an engaging and inviting manner, Beyond Basic Statistics: Tips, Tricks, and Techniques Every Data Analyst Should Know presents the more subjective side of statistics—the art of data analytics. Each chapter explores a different question using fun, common sense examples that illustrate the concepts, methods, and applications of statistical techniques. Without going into the specifics of theorems, propositions, or formulas, the book effectively demonstrates statistics as a useful problem-solving tool. In addition, the author demonstrates how statistics is a tool for thinking critically, wading through large volumes of information, and answering life’s important questions. Beyond Basic Statistics: Tips, Tricks, and Techniques Every Data Analyst Should Know also features: Plentiful examples throughout aimed to strengthen readers’ understanding of the statistical concepts and methods A step-by-step approach to elementary statistical topics such as sampling, hypothesis tests, outlier detection, normality tests, robust statistics, and multiple regression A case study in each chapter that illustrates the use of the presented techniques Highlights of well-known shortcomings that can lead to false conclusions An introduction to advanced techniques such as validation and bootstrapping Featuring examples that are engaging and non-application specific, the book appeals to a broad audience of students and professionals alike, specifically students of undergraduate statistics, managers, medical professionals, and anyone who has to make decisions based on raw data or compiled results.
C++ Crash Course
Author: Josh Lospinoso
Publisher: No Starch Press
ISBN: 1593278896
Category : Computers
Languages : en
Pages : 793
Book Description
A fast-paced, thorough introduction to modern C++ written for experienced programmers. After reading C++ Crash Course, you'll be proficient in the core language concepts, the C++ Standard Library, and the Boost Libraries. C++ is one of the most widely used languages for real-world software. In the hands of a knowledgeable programmer, C++ can produce small, efficient, and readable code that any programmer would be proud of. Designed for intermediate to advanced programmers, C++ Crash Course cuts through the weeds to get you straight to the core of C++17, the most modern revision of the ISO standard. Part 1 covers the core of the C++ language, where you'll learn about everything from types and functions, to the object life cycle and expressions. Part 2 introduces you to the C++ Standard Library and Boost Libraries, where you'll learn about all of the high-quality, fully-featured facilities available to you. You'll cover special utility classes, data structures, and algorithms, and learn how to manipulate file systems and build high-performance programs that communicate over networks. You'll learn all the major features of modern C++, including: Fundamental types, reference types, and user-defined types The object lifecycle including storage duration, memory management, exceptions, call stacks, and the RAII paradigm Compile-time polymorphism with templates and run-time polymorphism with virtual classes Advanced expressions, statements, and functions Smart pointers, data structures, dates and times, numerics, and probability/statistics facilities Containers, iterators, strings, and algorithms Streams and files, concurrency, networking, and application development With well over 500 code samples and nearly 100 exercises, C++ Crash Course is sure to help you build a strong C++ foundation.
Publisher: No Starch Press
ISBN: 1593278896
Category : Computers
Languages : en
Pages : 793
Book Description
A fast-paced, thorough introduction to modern C++ written for experienced programmers. After reading C++ Crash Course, you'll be proficient in the core language concepts, the C++ Standard Library, and the Boost Libraries. C++ is one of the most widely used languages for real-world software. In the hands of a knowledgeable programmer, C++ can produce small, efficient, and readable code that any programmer would be proud of. Designed for intermediate to advanced programmers, C++ Crash Course cuts through the weeds to get you straight to the core of C++17, the most modern revision of the ISO standard. Part 1 covers the core of the C++ language, where you'll learn about everything from types and functions, to the object life cycle and expressions. Part 2 introduces you to the C++ Standard Library and Boost Libraries, where you'll learn about all of the high-quality, fully-featured facilities available to you. You'll cover special utility classes, data structures, and algorithms, and learn how to manipulate file systems and build high-performance programs that communicate over networks. You'll learn all the major features of modern C++, including: Fundamental types, reference types, and user-defined types The object lifecycle including storage duration, memory management, exceptions, call stacks, and the RAII paradigm Compile-time polymorphism with templates and run-time polymorphism with virtual classes Advanced expressions, statements, and functions Smart pointers, data structures, dates and times, numerics, and probability/statistics facilities Containers, iterators, strings, and algorithms Streams and files, concurrency, networking, and application development With well over 500 code samples and nearly 100 exercises, C++ Crash Course is sure to help you build a strong C++ foundation.
An Introduction to Statistical Learning
Author: Gareth James
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617
Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Publisher: Springer Nature
ISBN: 3031387473
Category : Mathematics
Languages : en
Pages : 617
Book Description
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Naked Statistics: Stripping the Dread from the Data
Author: Charles Wheelan
Publisher: W. W. Norton & Company
ISBN: 0393089827
Category : Mathematics
Languages : en
Pages : 307
Book Description
A New York Times bestseller "Brilliant, funny…the best math teacher you never had." —San Francisco Chronicle Once considered tedious, the field of statistics is rapidly evolving into a discipline Hal Varian, chief economist at Google, has actually called "sexy." From batting averages and political polls to game shows and medical research, the real-world application of statistics continues to grow by leaps and bounds. How can we catch schools that cheat on standardized tests? How does Netflix know which movies you’ll like? What is causing the rising incidence of autism? As best-selling author Charles Wheelan shows us in Naked Statistics, the right data and a few well-chosen statistical tools can help us answer these questions and more. For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions. And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life.
Publisher: W. W. Norton & Company
ISBN: 0393089827
Category : Mathematics
Languages : en
Pages : 307
Book Description
A New York Times bestseller "Brilliant, funny…the best math teacher you never had." —San Francisco Chronicle Once considered tedious, the field of statistics is rapidly evolving into a discipline Hal Varian, chief economist at Google, has actually called "sexy." From batting averages and political polls to game shows and medical research, the real-world application of statistics continues to grow by leaps and bounds. How can we catch schools that cheat on standardized tests? How does Netflix know which movies you’ll like? What is causing the rising incidence of autism? As best-selling author Charles Wheelan shows us in Naked Statistics, the right data and a few well-chosen statistical tools can help us answer these questions and more. For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions. And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life.