Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits

Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits PDF Author: Christopher Michael
Publisher: Springer Science & Business Media
ISBN: 1461531500
Category : Computers
Languages : en
Pages : 200

Get Book Here

Book Description
As MOS devices are scaled to meet increasingly demanding circuit specifications, process variations have a greater effect on the reliability of circuit performance. For this reason, statistical techniques are required to design integrated circuits with maximum yield. Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits describes a statistical circuit simulation and optimization environment for VLSI circuit designers. The first step toward accomplishing statistical circuit design and optimization is the development of an accurate CAD tool capable of performing statistical simulation. This tool must be based on a statistical model which comprehends the effect of device and circuit characteristics, such as device size, bias, and circuit layout, which are under the control of the circuit designer on the variability of circuit performance. The distinctive feature of the CAD tool described in this book is its ability to accurately model and simulate the effect in both intra- and inter-die process variability on analog/digital circuits, accounting for the effects of the aforementioned device and circuit characteristics. Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits serves as an excellent reference for those working in the field, and may be used as the text for an advanced course on the subject.

Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits

Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits PDF Author: Christopher Michael
Publisher: Springer Science & Business Media
ISBN: 1461531500
Category : Computers
Languages : en
Pages : 200

Get Book Here

Book Description
As MOS devices are scaled to meet increasingly demanding circuit specifications, process variations have a greater effect on the reliability of circuit performance. For this reason, statistical techniques are required to design integrated circuits with maximum yield. Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits describes a statistical circuit simulation and optimization environment for VLSI circuit designers. The first step toward accomplishing statistical circuit design and optimization is the development of an accurate CAD tool capable of performing statistical simulation. This tool must be based on a statistical model which comprehends the effect of device and circuit characteristics, such as device size, bias, and circuit layout, which are under the control of the circuit designer on the variability of circuit performance. The distinctive feature of the CAD tool described in this book is its ability to accurately model and simulate the effect in both intra- and inter-die process variability on analog/digital circuits, accounting for the effects of the aforementioned device and circuit characteristics. Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits serves as an excellent reference for those working in the field, and may be used as the text for an advanced course on the subject.

MOSFET Models for VLSI Circuit Simulation

MOSFET Models for VLSI Circuit Simulation PDF Author: Narain D. Arora
Publisher: Springer Science & Business Media
ISBN: 3709192471
Category : Computers
Languages : en
Pages : 628

Get Book Here

Book Description
Metal Oxide Semiconductor (MOS) transistors are the basic building block ofMOS integrated circuits (I C). Very Large Scale Integrated (VLSI) circuits using MOS technology have emerged as the dominant technology in the semiconductor industry. Over the past decade, the complexity of MOS IC's has increased at an astonishing rate. This is realized mainly through the reduction of MOS transistor dimensions in addition to the improvements in processing. Today VLSI circuits with over 3 million transistors on a chip, with effective or electrical channel lengths of 0. 5 microns, are in volume production. Designing such complex chips is virtually impossible without simulation tools which help to predict circuit behavior before actual circuits are fabricated. However, the utility of simulators as a tool for the design and analysis of circuits depends on the adequacy of the device models used in the simulator. This problem is further aggravated by the technology trend towards smaller and smaller device dimensions which increases the complexity of the models. There is extensive literature available on modeling these short channel devices. However, there is a lot of confusion too. Often it is not clear what model to use and which model parameter values are important and how to determine them. After working over 15 years in the field of semiconductor device modeling, I have felt the need for a book which can fill the gap between the theory and the practice of MOS transistor modeling. This book is an attempt in that direction.

Mosfet Modeling for VLSI Simulation

Mosfet Modeling for VLSI Simulation PDF Author: Narain Arora
Publisher: World Scientific
ISBN: 9812707581
Category : Technology & Engineering
Languages : en
Pages : 633

Get Book Here

Book Description
A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physics based and continues to be relevant to the latest advances in MOS transistor modeling. This is also the only book that discusses in detail how to measure device model parameters required for circuit simulations. The book deals with the MOS Field Effect Transistor (MOSFET) models that are derived from basic semiconductor theory. Various models are developed, ranging from simple to more sophisticated models that take into account new physical effects observed in submicron transistors used in today's (1993) MOS VLSI technology. The assumptions used to arrive at the models are emphasized so that the accuracy of the models in describing the device characteristics are clearly understood. Due to the importance of designing reliable circuits, device reliability models are also covered. Understanding these models is essential when designing circuits for state-of-the-art MOS ICs.

Dynamic Translinear and Log-Domain Circuits

Dynamic Translinear and Log-Domain Circuits PDF Author: Jan Mulder
Publisher: Springer Science & Business Media
ISBN: 1461549558
Category : Technology & Engineering
Languages : en
Pages : 278

Get Book Here

Book Description
Log-domain and translinear filters provide a competitive alternative to the challenges of ever increasing low-voltage, low-power and high frequency demands in the area of continuous-time filters. Since translinear filters are fundamentally large-signal linear, they are capable of realizing a large dynamic range in combination with excellent tunability characteristics. Large-signal linearity is achieved by exploiting the accurate exponential behavior of the bipolar transistor or the subthreshold MOS transistor. A generalization of the dynamic translinear principle exploiting the square law behavior of the MOS transistor is theoretically possible, but not practically relevant. Translinear and log-domain filters are based on the dynamic translinear principle, a generalization of the conventional (static) translinear principle. Besides their application for linear filters, dynamic translinear circuits can also be used for the realization of non-linear dynamic functions, such as oscillators, RMS-DC converters and phase-locked loops. Dynamic Translinear and Log-Domain Circuits: Analysis and Synthesis covers both the analysis and synthesis of translinear circuits. The theory is presented using one unifying framework for both static and dynamic translinear networks, which is based on a current-mode approach. General analysis methods are presented, including the large-signal and non-stationary analysis of noise. A well-structured synthesis method is described greatly enhancing the designability of log-domain and translinear circuits. Comparisons are made with respect to alternative analysis and synthesis methods presented in the literature. The theory is illustrated and verified by various examples and realizations. Dynamic Translinear and Log-Domain Circuits: Analysis and Synthesis is an excellent reference for researchers and circuit designers, and may be used as a text for advanced courses on the topic.

Distortion Analysis of Analog Integrated Circuits

Distortion Analysis of Analog Integrated Circuits PDF Author: Piet Wambacq
Publisher: Springer Science & Business Media
ISBN: 147575003X
Category : Technology & Engineering
Languages : en
Pages : 528

Get Book Here

Book Description
The analysis and prediction of nonlinear behavior in electronic circuits has long been a topic of concern for analog circuit designers. The recent explosion of interest in portable electronics such as cellular telephones, cordless telephones and other applications has served to reinforce the importance of these issues. The need now often arises to predict and optimize the distortion performance of diverse electronic circuit configurations operating in the gigahertz frequency range, where nonlinear reactive effects often dominate. However, there have historically been few sources available from which design engineers could obtain information on analysis tech niques suitable for tackling these important problems. I am sure that the analog circuit design community will thus welcome this work by Dr. Wambacq and Professor Sansen as a major contribution to the analog circuit design literature in the area of distortion analysis of electronic circuits. I am personally looking forward to hav ing a copy readily available for reference when designing integrated circuits for communication systems.

Compact Low-Voltage and High-Speed CMOS, BiCMOS and Bipolar Operational Amplifiers

Compact Low-Voltage and High-Speed CMOS, BiCMOS and Bipolar Operational Amplifiers PDF Author: Klaas-Jan de Langen
Publisher: Springer Science & Business Media
ISBN: 1475729936
Category : Technology & Engineering
Languages : en
Pages : 258

Get Book Here

Book Description
Compact Low-Voltage and High-Speed CMOS, BiCMOS and Bipolar Operational Amplifiers discusses the design of integrated operational amplifiers that approach the limits of low supply voltage or very high bandwidth. The resulting realizations span the whole field of applications from micro-power CMOS VLSI amplifiers to 1-GHz bipolar amplifiers. The book presents efficient circuit topologies in order to combine high performance with simple solutions. In total twelve amplifier realizations are discussed. Two bipolar amplifiers are discussed, a 1-GHz operational amplifier and an amplifier with a high ratio between the maximum output current and the quiescent current. Five amplifiers have been designed in CMOS technology, extremely compact circuits that can operate on supply voltages down to one gate-source voltage and two saturation voltages which equals about 1.4 V and, ultimate-low-voltage amplifiers that can operate on supply voltages down to one gate-source voltage and one saturation voltage which amounts to about 1.2 V. In BiCMOS technology five amplifiers have been designed. The first two amplifiers are based on a compact topology. Two other amplifiers are designed to operate on low supply voltages down to 1.3 V. The final amplifier has a unity-gain frequency of 200 MHz and can operate down to 2.5 V. Compact Low-Voltage and High-Speed CMOS, BiCMOS and Bipolar Operational Amplifiers is intended for the professional analog designer. Also, it is suitable as a text book for advanced courses in amplifier design.

Modeling and Simulation of Mixed Analog-Digital Systems

Modeling and Simulation of Mixed Analog-Digital Systems PDF Author: B. Antao
Publisher: Springer Science & Business Media
ISBN: 1461314054
Category : Technology & Engineering
Languages : en
Pages : 131

Get Book Here

Book Description
Modeling and Simulation of Mixed Analog-Digital Systems brings together in one place important contributions and state-of-the-art research results in this rapidly advancing area. Modeling and Simulation of Mixed Analog-Digital Systems serves as an excellent reference, providing insight into some of the most important issues in the field.

Frequency Compensation Techniques for Low-Power Operational Amplifiers

Frequency Compensation Techniques for Low-Power Operational Amplifiers PDF Author: Rudy G.H. Eschauzier
Publisher: Springer Science & Business Media
ISBN: 147572375X
Category : Technology & Engineering
Languages : en
Pages : 255

Get Book Here

Book Description
Frequency Compensation Techniques for Low-Power Operational Amplifiers is intended for professional designers of integrated amplifiers, emphasizing low-voltage and low-power solutions. The book bridges the gap between the professional designer's needs and available techniques for frequency compensation. It does so by explaining existing techniques and introducing several new techniques including Hybrid Nested Miller compensation, Multipath Miller Zero cancellation and Multipath Conditionally Stable compensation. All compensation techniques are treated in a stage-number-based order, progressing from a single transistor to circuits with six stages and more. Apart from discussing the mathematical basis of the compensation methods, the book provides the reader with the factual information that is required for practicing the design of integrated feedback amplifiers and many worked out examples. What is more, many bipolar and CMOS operational amplifier realizations, along with their measurement results, prove the effectiveness of the compensation techniques in real-life circuits. The text focuses on low-voltage, low-power integrated amplifiers. Many of the presented bipolar circuits operate at supply voltages down to 1V, while several CMOS amplifiers that function correctly just slightly above this voltage are demonstrated. The lowest measured power consumption amounts to 17muW for a class AB CMOS opAmp with 120dB gain. Despite this attention to low voltage and low power, the frequency compensation strategies provided are universally applicable. The fundamental approach followed leads to efficient compensation strategies that are well guarded against the parameter variations inherent to the mass-fabrication of integrated circuits. The book is essential reading for practicing analog design engineers and researchers in the field. It is also suitable as a text for an advanced course on the subject.

Analog Signal Generation for Built-In-Self-Test of Mixed-Signal Integrated Circuits

Analog Signal Generation for Built-In-Self-Test of Mixed-Signal Integrated Circuits PDF Author: Gordon W. Roberts
Publisher: Springer Science & Business Media
ISBN: 1461523419
Category : Technology & Engineering
Languages : en
Pages : 125

Get Book Here

Book Description
Analog Signal Generation for Built-In-Self-Test (BIST) of Mixed-Signal Integrated Circuits is a concise introduction to a powerful new signal generation technique. The book begins with a brief introduction to the testing problem and a review of conventional signal generation techniques. The book then describes an oversampling-based oscillator capable of generating high-precision analog tones using a combination of digital logic and D/A conversion. These concepts are then extended to multi-tone testing schemes without introducing a severe hardware penalty. The concepts are extended further to encompass piece-wise linear waveforms such as square, triangular and sawtooth waves. Experimental results are presented to verify the ideas in each chapter and finally, conclusions are drawn. For those readers unfamiliar with delta-sigma modulation techniques, a brief introduction to this subject is also provided in an appendix. The book is ideal for test engineers, researchers and circuits designers with an interest in IC testing methods.

The Design of Low-Voltage, Low-Power Sigma-Delta Modulators

The Design of Low-Voltage, Low-Power Sigma-Delta Modulators PDF Author: Shahriar Rabii
Publisher: Springer Science & Business Media
ISBN: 1461551056
Category : Technology & Engineering
Languages : en
Pages : 198

Get Book Here

Book Description
Oversampling techniques based on sigma-delta modulation are widely used to implement the analog/digital interfaces in CMOS VLSI technologies. This approach is relatively insensitive to imperfections in the manufacturing process and offers numerous advantages for the realization of high-resolution analog-to-digital (A/D) converters in the low-voltage environment that is increasingly demanded by advanced VLSI technologies and by portable electronic systems. In The Design of Low-Voltage, Low-Power Sigma-Delta Modulators, an analysis of power dissipation in sigma-delta modulators is presented, and a low-voltage implementation of a digital-audio performance A/D converter based on the results of this analysis is described. Although significant power savings can typically be achieved in digital circuits by reducing the power supply voltage, the power dissipation in analog circuits actually tends to increase with decreasing supply voltages. Oversampling architectures are a potentially power-efficient means of implementing high-resolution A/D converters because they reduce the number and complexity of the analog circuits in comparison with Nyquist-rate converters. In fact, it is shown that the power dissipation of a sigma-delta modulator can approach that of a single integrator with the resolution and bandwidth required for a given application. In this research the influence of various parameters on the power dissipation of the modulator has been evaluated and strategies for the design of a power-efficient implementation have been identified. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators begins with an overview of A/D conversion, emphasizing sigma-delta modulators. It includes a detailed analysis of noise in sigma-delta modulators, analyzes power dissipation in integrator circuits, and addresses practical issues in the circuit design and testing of a high-resolution modulator. The Design of Low-Voltage, Low-Power Sigma-Delta Modulators will be of interest to practicing engineers and researchers in the areas of mixed-signal and analog integrated circuit design.