Statistical Inference for Stochastic Volatility Models

Statistical Inference for Stochastic Volatility Models PDF Author: Md. Nazmul Ahsan
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
"Although stochastic volatility (SV) models have many appealing features, estimation and inference on SV models are challenging problems due to the inherent difficulty of evaluating the likelihood function. The existing methods are either computationally costly and/or inefficient. This thesis studies and contributes to the SV literature from the estimation, inference, and volatility forecasting viewpoints. It consists of three essays, which include both theoretical and empirical contributions. On the whole, the thesis develops easily applicable statistical methods for stochastic volatility models.The first essay proposes computationally simple moment-based estimators for the first-order SV model. In addition to confirming the enormous computational advantage of the proposed estimators, the results show that the proposed estimators match (or exceed) alternative estimators in terms of precision – including Bayesian estimators proposed in this context, which have the best performance among alternative estimators. Using this simple estimator, we study three crucial test problems (no persistence, no latent specification of volatility, and no stochastic volatility hypothesis), and evaluate these null hypotheses in three ways: asymptotic critical values, a parametric bootstrap procedure, and a maximized Monte Carlo procedure. The proposed methods are applied to daily observations on the returns for three major stock prices [Coca-Cola, Walmart, Ford], and the Standard and Poor’s Composite Price Index. The results show the presence of stochastic volatility with strong persistence.The second essay studies the problem of estimating higher-order stochastic volatility [SV(p)] models. The estimation of SV(p) models is even more challenging and rarely considered in the literature. We propose several estimators for higher-order stochastic volatility models. Among these, the simple winsorized ARMA-based estimator is uniformly superior in terms of bias and RMSE to other estimators, including the Bayesian MCMC estimator. The proposed estimators are applied to stock return data, and the usefulness of the proposed estimators is assessed in two ways. First, using daily returns on the S&P 500 index from 1928 to 2016, we find that higher-order SV models – in particular an SV(3) model – are preferable to an SV(1), from the viewpoints of model fit and both asymptotic and finite-sample tests. Second, using different volatility proxies (squared return and realized volatility), we find that higher-order SV models are preferable for out-of-sample volatility forecasting, whether a high volatility period (such as financial crisis) is included in the estimation sample or the forecasted sample. Our results highlight the usefulness of higher-order SV models for volatility forecasting.In the final essay, we introduce a novel class of generalized stochastic volatility (GSV) models which utilize high-frequency (HF) information (realized volatility (RV) measures). GSV models can accommodate nonstationary volatility process, various distributional assumptions, and exogenous regressors in the latent volatility equation. Instrumental variable methods are employed to provide a unified framework for the analysis (estimation and inference) of GSV models. We consider the parameter inference problem in GSV models with nonstationary volatility and develop identification-robust methods for joint hypotheses involving the volatility persistence parameter and the autocorrelation parameter of the composite error (or the noise ratio). For distributional theory, three different sets of assumptions are considered. In simulations, the proposed tests outperform the usual asymptotic test regarding size and exhibit excellent power. We apply our inference methods to IBM price and option data andidentify several empirical relationships"--