Author: Richard Royall
Publisher: Routledge
ISBN: 1351414550
Category : Mathematics
Languages : en
Pages : 212
Book Description
Interpreting statistical data as evidence, Statistical Evidence: A Likelihood Paradigm focuses on the law of likelihood, fundamental to solving many of the problems associated with interpreting data in this way. Statistics has long neglected this principle, resulting in a seriously defective methodology. This book redresses the balance, explaining why science has clung to a defective methodology despite its well-known defects. After examining the strengths and weaknesses of the work of Neyman and Pearson and the Fisher paradigm, the author proposes an alternative paradigm which provides, in the law of likelihood, the explicit concept of evidence missing from the other paradigms. At the same time, this new paradigm retains the elements of objective measurement and control of the frequency of misleading results, features which made the old paradigms so important to science. The likelihood paradigm leads to statistical methods that have a compelling rationale and an elegant simplicity, no longer forcing the reader to choose between frequentist and Bayesian statistics.
Statistical Evidence
Author: Richard Royall
Publisher: Routledge
ISBN: 1351414569
Category : Mathematics
Languages : en
Pages : 208
Book Description
Interpreting statistical data as evidence, Statistical Evidence: A Likelihood Paradigm focuses on the law of likelihood, fundamental to solving many of the problems associated with interpreting data in this way. Statistics has long neglected this principle, resulting in a seriously defective methodology. This book redresses the balance, explaining why science has clung to a defective methodology despite its well-known defects. After examining the strengths and weaknesses of the work of Neyman and Pearson and the Fisher paradigm, the author proposes an alternative paradigm which provides, in the law of likelihood, the explicit concept of evidence missing from the other paradigms. At the same time, this new paradigm retains the elements of objective measurement and control of the frequency of misleading results, features which made the old paradigms so important to science. The likelihood paradigm leads to statistical methods that have a compelling rationale and an elegant simplicity, no longer forcing the reader to choose between frequentist and Bayesian statistics.
Publisher: Routledge
ISBN: 1351414569
Category : Mathematics
Languages : en
Pages : 208
Book Description
Interpreting statistical data as evidence, Statistical Evidence: A Likelihood Paradigm focuses on the law of likelihood, fundamental to solving many of the problems associated with interpreting data in this way. Statistics has long neglected this principle, resulting in a seriously defective methodology. This book redresses the balance, explaining why science has clung to a defective methodology despite its well-known defects. After examining the strengths and weaknesses of the work of Neyman and Pearson and the Fisher paradigm, the author proposes an alternative paradigm which provides, in the law of likelihood, the explicit concept of evidence missing from the other paradigms. At the same time, this new paradigm retains the elements of objective measurement and control of the frequency of misleading results, features which made the old paradigms so important to science. The likelihood paradigm leads to statistical methods that have a compelling rationale and an elegant simplicity, no longer forcing the reader to choose between frequentist and Bayesian statistics.
Measuring Statistical Evidence Using Relative Belief
Author: Michael Evans
Publisher: CRC Press
ISBN: 148224280X
Category : Mathematics
Languages : en
Pages : 252
Book Description
This book provides an overview of recent work on developing a theory of statistical inference based on measuring statistical evidence. It attempts to establish a gold standard for how a statistical analysis should proceed. The book illustrates relative belief theory using many examples and describes the strengths and weaknesses of the theory. The author also addresses fundamental statistical issues, including the meaning of probability, the role of subjectivity, the meaning of objectivity, and the role of infinity and continuity.
Publisher: CRC Press
ISBN: 148224280X
Category : Mathematics
Languages : en
Pages : 252
Book Description
This book provides an overview of recent work on developing a theory of statistical inference based on measuring statistical evidence. It attempts to establish a gold standard for how a statistical analysis should proceed. The book illustrates relative belief theory using many examples and describes the strengths and weaknesses of the theory. The author also addresses fundamental statistical issues, including the meaning of probability, the role of subjectivity, the meaning of objectivity, and the role of infinity and continuity.
Statistical Inference as Severe Testing
Author: Deborah G. Mayo
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503
Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503
Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
The Evolving Role of Statistical Assessments as Evidence in the Courts
Author: Stephen E. Fienberg
Publisher: Springer Science & Business Media
ISBN: 1461236045
Category : Law
Languages : en
Pages : 359
Book Description
With increasing frequency, the proof of facts in legal proceedings en tails the use of quantitative methods. Judges, lawyers, statisticians, social scientists, and many others involved in judicial processes must address is sues such as the evaluation and interpretation of quantitative evidence, the ethical and professional obligations of expert witnesses, and the roles of court-appointed witnesses. The Panel on Statistical Assessments as Evi dence in the Courts was convened to help clarify these issues and provide some guidance in addressing the difficulties encountered in the use of quan titative assessments in legal proceedings. This report is the culmination of more than three years of research and deliberation. In it, we address a variety of issues that arise in federal and state court proceedings when statistical assessments such as quantitative descriptions, causal inferences, and predictions of events based on earlier occurrences are presented as evidence. We appraise the forms in which such assessments are presented, aspects of their admission into evidence, and the response to and evaluation of them by judges and juries.
Publisher: Springer Science & Business Media
ISBN: 1461236045
Category : Law
Languages : en
Pages : 359
Book Description
With increasing frequency, the proof of facts in legal proceedings en tails the use of quantitative methods. Judges, lawyers, statisticians, social scientists, and many others involved in judicial processes must address is sues such as the evaluation and interpretation of quantitative evidence, the ethical and professional obligations of expert witnesses, and the roles of court-appointed witnesses. The Panel on Statistical Assessments as Evi dence in the Courts was convened to help clarify these issues and provide some guidance in addressing the difficulties encountered in the use of quan titative assessments in legal proceedings. This report is the culmination of more than three years of research and deliberation. In it, we address a variety of issues that arise in federal and state court proceedings when statistical assessments such as quantitative descriptions, causal inferences, and predictions of events based on earlier occurrences are presented as evidence. We appraise the forms in which such assessments are presented, aspects of their admission into evidence, and the response to and evaluation of them by judges and juries.
The Nature of Scientific Evidence
Author: Mark L. Taper
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 600
Book Description
Mark Taper, Subhash Lele and an esteemed group of contributors explore the relationships among hypotheses, models, data and interference on which scientific progress rests in an attempt to develop a new quantitative framework for evidence.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 600
Book Description
Mark Taper, Subhash Lele and an esteemed group of contributors explore the relationships among hypotheses, models, data and interference on which scientific progress rests in an attempt to develop a new quantitative framework for evidence.
Evidence-Based Technical Analysis
Author: David Aronson
Publisher: John Wiley & Sons
ISBN: 1118160584
Category : Business & Economics
Languages : en
Pages : 572
Book Description
Evidence-Based Technical Analysis examines how you can apply the scientific method, and recently developed statistical tests, to determine the true effectiveness of technical trading signals. Throughout the book, expert David Aronson provides you with comprehensive coverage of this new methodology, which is specifically designed for evaluating the performance of rules/signals that are discovered by data mining.
Publisher: John Wiley & Sons
ISBN: 1118160584
Category : Business & Economics
Languages : en
Pages : 572
Book Description
Evidence-Based Technical Analysis examines how you can apply the scientific method, and recently developed statistical tests, to determine the true effectiveness of technical trading signals. Throughout the book, expert David Aronson provides you with comprehensive coverage of this new methodology, which is specifically designed for evaluating the performance of rules/signals that are discovered by data mining.
Computer Age Statistical Inference
Author: Bradley Efron
Publisher: Cambridge University Press
ISBN: 1108107958
Category : Mathematics
Languages : en
Pages : 496
Book Description
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Publisher: Cambridge University Press
ISBN: 1108107958
Category : Mathematics
Languages : en
Pages : 496
Book Description
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Statistical Evidence in Medical Trials
Author: Stephen D. Simon
Publisher: Oxford University Press, USA
ISBN: 9780198567615
Category : Medical
Languages : en
Pages : 197
Book Description
Aimed at students and researchers in statistics and in the medical and health care sector as well as those who use and assess medical data, this work addresses common pitfalls in experimental design, focusing on the errors and misleading data that stem from flawed experiments and analytical methods in medical research.
Publisher: Oxford University Press, USA
ISBN: 9780198567615
Category : Medical
Languages : en
Pages : 197
Book Description
Aimed at students and researchers in statistics and in the medical and health care sector as well as those who use and assess medical data, this work addresses common pitfalls in experimental design, focusing on the errors and misleading data that stem from flawed experiments and analytical methods in medical research.
Computer Age Statistical Inference, Student Edition
Author: Bradley Efron
Publisher: Cambridge University Press
ISBN: 1108915876
Category : Mathematics
Languages : en
Pages : 514
Book Description
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science.
Publisher: Cambridge University Press
ISBN: 1108915876
Category : Mathematics
Languages : en
Pages : 514
Book Description
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science.
Clinical Versus Statistical Prediction
Author: Paul Meehl
Publisher: Echo Point Books & Media
ISBN: 9781626542303
Category : Medical
Languages : en
Pages : 164
Book Description
"Clinical versus Statistical Prediction" is Paul Meehl's famous examination of benefits and disutilities related to the different ways of combining information to make predictions. It is a clarifying analysis as relevant today as when it first appeared. A major methodological problem for clinical psychology concerns the relation between clinical and actuarial methods of arriving at diagnoses and predicting behavior. Without prejudging the question as to whether these methods are fundamentally different, we can at least set forth the obvious distinctions between them in practical applications. The problem is to predict how a person is going to behave: What is the most accurate way to go about this task? "Clinical versus Statistical Prediction" offers a penetrating and thorough look at the pros and cons of human judgment versus actuarial integration of information as applied to the prediction problem. Widely considered the leading text on the subject, Paul Meehl's landmark analysis is reprinted here in its entirety, including his updated preface written forty-two years after the first publication of the book. This classic work is a must-have for students and practitioners interested in better understanding human behavior, for anyone wanting to make the most accurate decisions from all sorts of data, and for those interested in the ethics and intricacies of prediction. As Meehl puts it, " "When one is dealing with human lives and life opportunities, it is immoral to adopt a mode of decision-making which has been demonstrated repeatedly to be either inferior in success rate or, when equal, costlier to the client or the taxpayer.""
Publisher: Echo Point Books & Media
ISBN: 9781626542303
Category : Medical
Languages : en
Pages : 164
Book Description
"Clinical versus Statistical Prediction" is Paul Meehl's famous examination of benefits and disutilities related to the different ways of combining information to make predictions. It is a clarifying analysis as relevant today as when it first appeared. A major methodological problem for clinical psychology concerns the relation between clinical and actuarial methods of arriving at diagnoses and predicting behavior. Without prejudging the question as to whether these methods are fundamentally different, we can at least set forth the obvious distinctions between them in practical applications. The problem is to predict how a person is going to behave: What is the most accurate way to go about this task? "Clinical versus Statistical Prediction" offers a penetrating and thorough look at the pros and cons of human judgment versus actuarial integration of information as applied to the prediction problem. Widely considered the leading text on the subject, Paul Meehl's landmark analysis is reprinted here in its entirety, including his updated preface written forty-two years after the first publication of the book. This classic work is a must-have for students and practitioners interested in better understanding human behavior, for anyone wanting to make the most accurate decisions from all sorts of data, and for those interested in the ethics and intricacies of prediction. As Meehl puts it, " "When one is dealing with human lives and life opportunities, it is immoral to adopt a mode of decision-making which has been demonstrated repeatedly to be either inferior in success rate or, when equal, costlier to the client or the taxpayer.""