Author: Eric D. Feigelson
Publisher: Springer Science & Business Media
ISBN: 146143520X
Category : Mathematics
Languages : en
Pages : 544
Book Description
This volume contains a selection of chapters based on papers to be presented at the Fifth Statistical Challenges in Modern Astronomy Symposium. The symposium will be held June 13-15th at Penn State University. Modern astronomical research faces a vast range of statistical issues which have spawned a revival in methodological activity among astronomers. The Statistical Challenges in Modern Astronomy V conference will bring astronomers and statisticians together to discuss methodological issues of common interest. Time series analysis, image analysis, Bayesian methods, Poisson processes, nonlinear regression, maximum likelihood, multivariate classification, and wavelet and multiscale analyses are all important themes to be covered in detail. Many problems will be introduced at the conference in the context of large-scale astronomical projects including LIGO, AXAF, XTE, Hipparcos, and digitized sky surveys.
Statistical Challenges in Modern Astronomy V
Author: Eric D. Feigelson
Publisher: Springer Science & Business Media
ISBN: 146143520X
Category : Mathematics
Languages : en
Pages : 544
Book Description
This volume contains a selection of chapters based on papers to be presented at the Fifth Statistical Challenges in Modern Astronomy Symposium. The symposium will be held June 13-15th at Penn State University. Modern astronomical research faces a vast range of statistical issues which have spawned a revival in methodological activity among astronomers. The Statistical Challenges in Modern Astronomy V conference will bring astronomers and statisticians together to discuss methodological issues of common interest. Time series analysis, image analysis, Bayesian methods, Poisson processes, nonlinear regression, maximum likelihood, multivariate classification, and wavelet and multiscale analyses are all important themes to be covered in detail. Many problems will be introduced at the conference in the context of large-scale astronomical projects including LIGO, AXAF, XTE, Hipparcos, and digitized sky surveys.
Publisher: Springer Science & Business Media
ISBN: 146143520X
Category : Mathematics
Languages : en
Pages : 544
Book Description
This volume contains a selection of chapters based on papers to be presented at the Fifth Statistical Challenges in Modern Astronomy Symposium. The symposium will be held June 13-15th at Penn State University. Modern astronomical research faces a vast range of statistical issues which have spawned a revival in methodological activity among astronomers. The Statistical Challenges in Modern Astronomy V conference will bring astronomers and statisticians together to discuss methodological issues of common interest. Time series analysis, image analysis, Bayesian methods, Poisson processes, nonlinear regression, maximum likelihood, multivariate classification, and wavelet and multiscale analyses are all important themes to be covered in detail. Many problems will be introduced at the conference in the context of large-scale astronomical projects including LIGO, AXAF, XTE, Hipparcos, and digitized sky surveys.
Statistical Challenges in Modern Astronomy
Author: Eric D. Feigelson
Publisher: Springer Science & Business Media
ISBN: 146139290X
Category : Science
Languages : en
Pages : 528
Book Description
Modern astronomy has been characterized by an enormous growth in data acquisition - from new technologies in telescopes, detectors, and computation. One can now compile catalogs of tens or hundreds of millions of stars or galaxies and databases from satellite-based observations are reaching terabit proportions. This wealth of data gives rise to statistical challenges not previously encountered in astronomy. This book is the result of a workshop held at Pennsylvania State University in August 1991 that brought together leading astronomers and statisticians to consider statistical challenges encountered in modern astronomical research. The chapters have all been thoroughly revised in the light of the discussions at the conference, and some of the lively discussion is recorded here as well.
Publisher: Springer Science & Business Media
ISBN: 146139290X
Category : Science
Languages : en
Pages : 528
Book Description
Modern astronomy has been characterized by an enormous growth in data acquisition - from new technologies in telescopes, detectors, and computation. One can now compile catalogs of tens or hundreds of millions of stars or galaxies and databases from satellite-based observations are reaching terabit proportions. This wealth of data gives rise to statistical challenges not previously encountered in astronomy. This book is the result of a workshop held at Pennsylvania State University in August 1991 that brought together leading astronomers and statisticians to consider statistical challenges encountered in modern astronomical research. The chapters have all been thoroughly revised in the light of the discussions at the conference, and some of the lively discussion is recorded here as well.
Statistical Challenges in Modern Astronomy II
Author: G. Jogesh Babu
Publisher: Springer Science & Business Media
ISBN: 146121968X
Category : Science
Languages : en
Pages : 463
Book Description
Modern astronomical research faces a vast range of statistical issues which have spawned a revival in methodological activity among astronomers. The Statistical Challenges in Modern Astronomy II conference brought astronomers and statisticians together to discuss methodological issues of common interest. Time series analysis, image analysis, Bayesian methods, Poisson processes, nonlinear regression, maximum likelihood, multivariate classification, and wavelet and multiscale analyses were all important themes. Many problems were introduced at the conference in the context of large-scale astronomical projects including LIGO, AXAF, XTE, Hipparcos, and digitised sky surveys. As such, this volume will be of interest to researchers and advanced students in both fields - astronomers seeking exposure to recent developments in statistics, and statisticians interested in confronting new problems.
Publisher: Springer Science & Business Media
ISBN: 146121968X
Category : Science
Languages : en
Pages : 463
Book Description
Modern astronomical research faces a vast range of statistical issues which have spawned a revival in methodological activity among astronomers. The Statistical Challenges in Modern Astronomy II conference brought astronomers and statisticians together to discuss methodological issues of common interest. Time series analysis, image analysis, Bayesian methods, Poisson processes, nonlinear regression, maximum likelihood, multivariate classification, and wavelet and multiscale analyses were all important themes. Many problems were introduced at the conference in the context of large-scale astronomical projects including LIGO, AXAF, XTE, Hipparcos, and digitised sky surveys. As such, this volume will be of interest to researchers and advanced students in both fields - astronomers seeking exposure to recent developments in statistics, and statisticians interested in confronting new problems.
Astrostatistical Challenges for the New Astronomy
Author: Joseph M. Hilbe
Publisher: Springer Science & Business Media
ISBN: 1461435080
Category : Mathematics
Languages : en
Pages : 247
Book Description
Astrostatistical Challenges for the New Astronomy presents a collection of monographs authored by several of the disciplines leading astrostatisticians, i.e. by researchers from the fields of statistics and astronomy-astrophysics, who work in the statistical analysis of astronomical and cosmological data. Eight of the ten monographs are enhancements of presentations given by the authors as invited or special topics in astrostatistics papers at the ISI World Statistics Congress (2011, Dublin, Ireland). The opening chapter, by the editor, was adapted from an invited seminar given at Los Alamos National Laboratory (2011) on the history and current state of the discipline; the second chapter by Thomas Loredo was adapted from his invited presentation at the Statistical Challenges in Modern Astronomy V conference (2011, Pennsylvania State University), presenting insights regarding frequentist and Bayesian methods of estimation in astrostatistical analysis. The remaining monographs are research papers discussing various topics in astrostatistics. The monographs provide the reader with an excellent overview of the current state astrostatistical research, and offer guidelines as to subjects of future research. Lead authors for each chapter respectively include Joseph M. Hilbe (Jet Propulsion Laboratory and Arizona State Univ); Thomas J. Loredo (Dept of Astronomy, Cornell Univ); Stefano Andreon (INAF-Osservatorio Astronomico di Brera, Italy); Martin Kunz ( Institute for Theoretical Physics, Univ of Geneva, Switz); Benjamin Wandel ( Institut d'Astrophysique de Paris, Univ Pierre et Marie Curie, France); Roberto Trotta (Astrophysics Group, Dept of Physics, Imperial College London, UK); Phillip Gregory (Dept of Astronomy, Univ of British Columbia, Canada); Marc Henrion (Dept of Mathematics, Imperial College, London, UK); Asis Kumar Chattopadhyay (Dept of Statistics, Univ of Calcutta, India); Marisa March (Astrophysics Group, Dept of Physics, Imperial College, London, UK)./body
Publisher: Springer Science & Business Media
ISBN: 1461435080
Category : Mathematics
Languages : en
Pages : 247
Book Description
Astrostatistical Challenges for the New Astronomy presents a collection of monographs authored by several of the disciplines leading astrostatisticians, i.e. by researchers from the fields of statistics and astronomy-astrophysics, who work in the statistical analysis of astronomical and cosmological data. Eight of the ten monographs are enhancements of presentations given by the authors as invited or special topics in astrostatistics papers at the ISI World Statistics Congress (2011, Dublin, Ireland). The opening chapter, by the editor, was adapted from an invited seminar given at Los Alamos National Laboratory (2011) on the history and current state of the discipline; the second chapter by Thomas Loredo was adapted from his invited presentation at the Statistical Challenges in Modern Astronomy V conference (2011, Pennsylvania State University), presenting insights regarding frequentist and Bayesian methods of estimation in astrostatistical analysis. The remaining monographs are research papers discussing various topics in astrostatistics. The monographs provide the reader with an excellent overview of the current state astrostatistical research, and offer guidelines as to subjects of future research. Lead authors for each chapter respectively include Joseph M. Hilbe (Jet Propulsion Laboratory and Arizona State Univ); Thomas J. Loredo (Dept of Astronomy, Cornell Univ); Stefano Andreon (INAF-Osservatorio Astronomico di Brera, Italy); Martin Kunz ( Institute for Theoretical Physics, Univ of Geneva, Switz); Benjamin Wandel ( Institut d'Astrophysique de Paris, Univ Pierre et Marie Curie, France); Roberto Trotta (Astrophysics Group, Dept of Physics, Imperial College London, UK); Phillip Gregory (Dept of Astronomy, Univ of British Columbia, Canada); Marc Henrion (Dept of Mathematics, Imperial College, London, UK); Asis Kumar Chattopadhyay (Dept of Statistics, Univ of Calcutta, India); Marisa March (Astrophysics Group, Dept of Physics, Imperial College, London, UK)./body
Statistical Challenges in Astronomy
Author: Eric D. Feigelson
Publisher: Springer Science & Business Media
ISBN: 0387215298
Category : Science
Languages : en
Pages : 512
Book Description
Digital sky surveys, high-precision astrometry from satellite data, deep-space data from orbiting telescopes, and the like have all increased the quantity and quality of astronomical data by orders of magnitude per year for several years. Making sense of this wealth of data requires sophisticated statistical techniques. Fortunately, statistical methodologies have similarly made great strides in recent years. Powerful synergies thus emerge when astronomers and statisticians join in examining astrostatistical problems and approaches. The book begins with an historical overview and tutorial articles on basic cosmology for statisticians and the principles of Bayesian analysis for astronomers. As in earlier volumes in this series, research contributions discussing topics in one field are joined with commentary from scholars in the other. Thus, for example, an overview of Bayesian methods for Poissonian data is joined by discussions of planning astronomical observations with optimal efficiency and nested models to deal with instrumental effects. The principal theme for the volume is the statistical methods needed to model fundamental characteristics of the early universe on its largest scales.
Publisher: Springer Science & Business Media
ISBN: 0387215298
Category : Science
Languages : en
Pages : 512
Book Description
Digital sky surveys, high-precision astrometry from satellite data, deep-space data from orbiting telescopes, and the like have all increased the quantity and quality of astronomical data by orders of magnitude per year for several years. Making sense of this wealth of data requires sophisticated statistical techniques. Fortunately, statistical methodologies have similarly made great strides in recent years. Powerful synergies thus emerge when astronomers and statisticians join in examining astrostatistical problems and approaches. The book begins with an historical overview and tutorial articles on basic cosmology for statisticians and the principles of Bayesian analysis for astronomers. As in earlier volumes in this series, research contributions discussing topics in one field are joined with commentary from scholars in the other. Thus, for example, an overview of Bayesian methods for Poissonian data is joined by discussions of planning astronomical observations with optimal efficiency and nested models to deal with instrumental effects. The principal theme for the volume is the statistical methods needed to model fundamental characteristics of the early universe on its largest scales.
Statistical Challenges in Modern Astronomy IV
Author: Gutti Jogesh Babu
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 488
Book Description
"This is the fourth in a series of international conferences for the vanguard of researchers in the cross-disciplinary field of astrostatistics. Both astronomical and statistical communities now recognize the wide array of fascinating methodological issues faced by the modern astronomer. Ranging from terabyte wide-field surveys to small-N samples, from cosmology to the search for Earth-like planets, astronomical research can no longer be pursued with a small toolbox of familiar statistical methods. Over thirty distinguished scholars from both fields presented invited talks and commentaries on leading problems in astrostatistics. The methodological challenges of inferring cosmological insights from the cosmic microwave background fluctuations, the distribution of galaxies in space, gravitational lensing, and galaxy structure wre describe in detail. Time series analysis is discussed in a variety of contexts: sparse Poisson data, multiply-periodic systems, gravitational wave detection, and most dramatically in the search for extrasolar planets. Here sophisticated Bayesian model selection with MCMC computations plays a critical role. Other topics covered include image processing, analysis of mega-datasets from large surveys, and small-N problems in both astronomy and particle physics. The volume ends with cross-disciplinary overviews and software tutorials. The book will be valuable to graduate students and researchers in both astronomy and statistics who seek insights into this promising avenue of cross-disciplinary research."--Publisher's website
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 488
Book Description
"This is the fourth in a series of international conferences for the vanguard of researchers in the cross-disciplinary field of astrostatistics. Both astronomical and statistical communities now recognize the wide array of fascinating methodological issues faced by the modern astronomer. Ranging from terabyte wide-field surveys to small-N samples, from cosmology to the search for Earth-like planets, astronomical research can no longer be pursued with a small toolbox of familiar statistical methods. Over thirty distinguished scholars from both fields presented invited talks and commentaries on leading problems in astrostatistics. The methodological challenges of inferring cosmological insights from the cosmic microwave background fluctuations, the distribution of galaxies in space, gravitational lensing, and galaxy structure wre describe in detail. Time series analysis is discussed in a variety of contexts: sparse Poisson data, multiply-periodic systems, gravitational wave detection, and most dramatically in the search for extrasolar planets. Here sophisticated Bayesian model selection with MCMC computations plays a critical role. Other topics covered include image processing, analysis of mega-datasets from large surveys, and small-N problems in both astronomy and particle physics. The volume ends with cross-disciplinary overviews and software tutorials. The book will be valuable to graduate students and researchers in both astronomy and statistics who seek insights into this promising avenue of cross-disciplinary research."--Publisher's website
Modern Statistical Methods for Astronomy
Author: Eric D. Feigelson
Publisher: Cambridge University Press
ISBN: 052176727X
Category : Science
Languages : en
Pages : 495
Book Description
Modern Statistical Methods for Astronomy: With R Applications.
Publisher: Cambridge University Press
ISBN: 052176727X
Category : Science
Languages : en
Pages : 495
Book Description
Modern Statistical Methods for Astronomy: With R Applications.
Bayesian Models for Astrophysical Data
Author: Joseph M. Hilbe
Publisher: Cambridge University Press
ISBN: 1107133084
Category : Mathematics
Languages : en
Pages : 429
Book Description
A hands-on guide to Bayesian models with R, JAGS, Python, and Stan code, for a wide range of astronomical data types.
Publisher: Cambridge University Press
ISBN: 1107133084
Category : Mathematics
Languages : en
Pages : 429
Book Description
A hands-on guide to Bayesian models with R, JAGS, Python, and Stan code, for a wide range of astronomical data types.
Statistics, Data Mining, and Machine Learning in Astronomy
Author: Željko Ivezić
Publisher: Princeton University Press
ISBN: 0691198306
Category : Computers
Languages : en
Pages : 548
Book Description
"As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. The updates in this new edition will include fixing "code rot," correcting errata, and adding some new sections. In particular, the new sections include new material on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest"--
Publisher: Princeton University Press
ISBN: 0691198306
Category : Computers
Languages : en
Pages : 548
Book Description
"As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. The updates in this new edition will include fixing "code rot," correcting errata, and adding some new sections. In particular, the new sections include new material on deep learning methods, hierarchical Bayes modeling, and approximate Bayesian computation. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest"--
Bayesian Astrophysics
Author: Andrés Asensio Ramos
Publisher: Cambridge University Press
ISBN: 1107102138
Category : Mathematics
Languages : en
Pages : 209
Book Description
Provides an overview of the fundamentals of Bayesian inference and its applications within astrophysics, for graduate students and researchers.
Publisher: Cambridge University Press
ISBN: 1107102138
Category : Mathematics
Languages : en
Pages : 209
Book Description
Provides an overview of the fundamentals of Bayesian inference and its applications within astrophysics, for graduate students and researchers.