Author: Gennady Samorodnitsky
Publisher: CRC Press
ISBN: 9780412051715
Category : Mathematics
Languages : en
Pages : 662
Book Description
Both an introduction and a basic reference text on non-Gaussian stable models, for graduate students and practitioners. Assuming only a first-year graduate course in probability, it includes material which has only recently appeared in journals and unpublished materials. Each chapter begins with a brief overview and concludes with a range of exercises at varying levels of difficulty. Proofs are spelled out in detail. The volume includes a discussion of self-similar processes, ARMA, and fractional ARIMA time series with stable innovations. Annotation copyright by Book News, Inc., Portland, OR
Stable Non-Gaussian Random Processes
Author: Gennady Samorodnitsky
Publisher: CRC Press
ISBN: 9780412051715
Category : Mathematics
Languages : en
Pages : 662
Book Description
Both an introduction and a basic reference text on non-Gaussian stable models, for graduate students and practitioners. Assuming only a first-year graduate course in probability, it includes material which has only recently appeared in journals and unpublished materials. Each chapter begins with a brief overview and concludes with a range of exercises at varying levels of difficulty. Proofs are spelled out in detail. The volume includes a discussion of self-similar processes, ARMA, and fractional ARIMA time series with stable innovations. Annotation copyright by Book News, Inc., Portland, OR
Publisher: CRC Press
ISBN: 9780412051715
Category : Mathematics
Languages : en
Pages : 662
Book Description
Both an introduction and a basic reference text on non-Gaussian stable models, for graduate students and practitioners. Assuming only a first-year graduate course in probability, it includes material which has only recently appeared in journals and unpublished materials. Each chapter begins with a brief overview and concludes with a range of exercises at varying levels of difficulty. Proofs are spelled out in detail. The volume includes a discussion of self-similar processes, ARMA, and fractional ARIMA time series with stable innovations. Annotation copyright by Book News, Inc., Portland, OR
Stable Non-Gaussian Random Processes
Author: Gennady Samoradnitsky
Publisher: Routledge
ISBN: 1351414801
Category : Mathematics
Languages : en
Pages : 655
Book Description
This book serves as a standard reference, making this area accessible not only to researchers in probability and statistics, but also to graduate students and practitioners. The book assumes only a first-year graduate course in probability. Each chapter begins with a brief overview and concludes with a wide range of exercises at varying levels of difficulty. The authors supply detailed hints for the more challenging problems, and cover many advances made in recent years.
Publisher: Routledge
ISBN: 1351414801
Category : Mathematics
Languages : en
Pages : 655
Book Description
This book serves as a standard reference, making this area accessible not only to researchers in probability and statistics, but also to graduate students and practitioners. The book assumes only a first-year graduate course in probability. Each chapter begins with a brief overview and concludes with a wide range of exercises at varying levels of difficulty. The authors supply detailed hints for the more challenging problems, and cover many advances made in recent years.
Random Processes for Engineers
Author: Bruce Hajek
Publisher: Cambridge University Press
ISBN: 1316241246
Category : Technology & Engineering
Languages : en
Pages : 429
Book Description
This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).
Publisher: Cambridge University Press
ISBN: 1316241246
Category : Technology & Engineering
Languages : en
Pages : 429
Book Description
This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).
Introduction to Random Chaos
Author: Jerzy Szulga
Publisher: CRC Press
ISBN: 9780412050916
Category : Mathematics
Languages : en
Pages : 610
Book Description
Introduction to Random Chaos contains a wealth of information on this significant area, rooted in hypercontraction and harmonic analysis. Random chaos statistics extend the classical concept of empirical mean and variance. By focusing on the three models of Rademacher, Poisson, and Wiener chaos, this book shows how an iteration of a simple random principle leads to a nonlinear probability model- unifying seemingly separate types of chaos into a network of theorems, procedures, and applications. The concepts and techniques connect diverse areas of probability, algebra, and analysis and enhance numerous links between many fields of science. Introduction to Random Chaos serves researchers and graduate students in probability, analysis, statistics, physics, and applicable areas of science and technology.
Publisher: CRC Press
ISBN: 9780412050916
Category : Mathematics
Languages : en
Pages : 610
Book Description
Introduction to Random Chaos contains a wealth of information on this significant area, rooted in hypercontraction and harmonic analysis. Random chaos statistics extend the classical concept of empirical mean and variance. By focusing on the three models of Rademacher, Poisson, and Wiener chaos, this book shows how an iteration of a simple random principle leads to a nonlinear probability model- unifying seemingly separate types of chaos into a network of theorems, procedures, and applications. The concepts and techniques connect diverse areas of probability, algebra, and analysis and enhance numerous links between many fields of science. Introduction to Random Chaos serves researchers and graduate students in probability, analysis, statistics, physics, and applicable areas of science and technology.
Applied Non-Gaussian Processes
Author: Mircea Grigoriu
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 472
Book Description
This text defines a variety of non-Gaussian processes, develops methods for generating realizations of non-Gaussian models, and provides methods for finding probabilistic characteristics of the output of linear filters with non-Gaussian inputs.
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 472
Book Description
This text defines a variety of non-Gaussian processes, develops methods for generating realizations of non-Gaussian models, and provides methods for finding probabilistic characteristics of the output of linear filters with non-Gaussian inputs.
High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Random Processes by Example
Author: Mikhail Lifshits
Publisher: World Scientific
ISBN: 9814522295
Category : Mathematics
Languages : en
Pages : 232
Book Description
This volume first introduces the mathematical tools necessary for understanding and working with a broad class of applied stochastic models. The toolbox includes Gaussian processes, independently scattered measures such as Gaussian white noise and Poisson random measures, stochastic integrals, compound Poisson, infinitely divisible and stable distributions and processes. Next, it illustrates general concepts by handling a transparent but rich example of a OC teletraffic modelOCO. A minor tuning of a few parameters of the model leads to different workload regimes, including Wiener process, fractional Brownian motion and stable L(r)vy process. The simplicity of the dependence mechanism used in the model enables us to get a clear understanding of long and short range dependence phenomena. The model also shows how light or heavy distribution tails lead to continuous Gaussian processes or to processes with jumps in the limiting regime. Finally, in this volume, readers will find discussions on the multivariate extensions that admit a variety of completely different applied interpretations. The reader will quickly become familiar with key concepts that form a language for many major probabilistic models of real world phenomena but are often neglected in more traditional courses of stochastic processes. Sample Chapter(s). Chapter 1: Preliminaries (367 KB). Contents: Preliminaries: Random Variables: A Summary; From Poisson to Stable Variables; Limit Theorems for Sums and Domains of Attraction; Random Vectors; Random Processes: Random Processes: Main Classes; Examples of Gaussian Random Processes; Random Measures and Stochastic Integrals; Limit Theorems for Poisson Integrals; L(r)vy Processes; Spectral Representations; Convergence of Random Processes; Teletraffic Models: A Model of Service System; Limit Theorems for the Workload; Micropulse Model; Spacial Extensions. Readership: Graduate students and researchers in probability & statist
Publisher: World Scientific
ISBN: 9814522295
Category : Mathematics
Languages : en
Pages : 232
Book Description
This volume first introduces the mathematical tools necessary for understanding and working with a broad class of applied stochastic models. The toolbox includes Gaussian processes, independently scattered measures such as Gaussian white noise and Poisson random measures, stochastic integrals, compound Poisson, infinitely divisible and stable distributions and processes. Next, it illustrates general concepts by handling a transparent but rich example of a OC teletraffic modelOCO. A minor tuning of a few parameters of the model leads to different workload regimes, including Wiener process, fractional Brownian motion and stable L(r)vy process. The simplicity of the dependence mechanism used in the model enables us to get a clear understanding of long and short range dependence phenomena. The model also shows how light or heavy distribution tails lead to continuous Gaussian processes or to processes with jumps in the limiting regime. Finally, in this volume, readers will find discussions on the multivariate extensions that admit a variety of completely different applied interpretations. The reader will quickly become familiar with key concepts that form a language for many major probabilistic models of real world phenomena but are often neglected in more traditional courses of stochastic processes. Sample Chapter(s). Chapter 1: Preliminaries (367 KB). Contents: Preliminaries: Random Variables: A Summary; From Poisson to Stable Variables; Limit Theorems for Sums and Domains of Attraction; Random Vectors; Random Processes: Random Processes: Main Classes; Examples of Gaussian Random Processes; Random Measures and Stochastic Integrals; Limit Theorems for Poisson Integrals; L(r)vy Processes; Spectral Representations; Convergence of Random Processes; Teletraffic Models: A Model of Service System; Limit Theorems for the Workload; Micropulse Model; Spacial Extensions. Readership: Graduate students and researchers in probability & statist
Univariate Stable Distributions
Author: John P. Nolan
Publisher: Springer Nature
ISBN: 3030529150
Category : Mathematics
Languages : en
Pages : 342
Book Description
This textbook highlights the many practical uses of stable distributions, exploring the theory, numerical algorithms, and statistical methods used to work with stable laws. Because of the author’s accessible and comprehensive approach, readers will be able to understand and use these methods. Both mathematicians and non-mathematicians will find this a valuable resource for more accurately modelling and predicting large values in a number of real-world scenarios. Beginning with an introductory chapter that explains key ideas about stable laws, readers will be prepared for the more advanced topics that appear later. The following chapters present the theory of stable distributions, a wide range of applications, and statistical methods, with the final chapters focusing on regression, signal processing, and related distributions. Each chapter ends with a number of carefully chosen exercises. Links to free software are included as well, where readers can put these methods into practice. Univariate Stable Distributions is ideal for advanced undergraduate or graduate students in mathematics, as well as many other fields, such as statistics, economics, engineering, physics, and more. It will also appeal to researchers in probability theory who seek an authoritative reference on stable distributions.
Publisher: Springer Nature
ISBN: 3030529150
Category : Mathematics
Languages : en
Pages : 342
Book Description
This textbook highlights the many practical uses of stable distributions, exploring the theory, numerical algorithms, and statistical methods used to work with stable laws. Because of the author’s accessible and comprehensive approach, readers will be able to understand and use these methods. Both mathematicians and non-mathematicians will find this a valuable resource for more accurately modelling and predicting large values in a number of real-world scenarios. Beginning with an introductory chapter that explains key ideas about stable laws, readers will be prepared for the more advanced topics that appear later. The following chapters present the theory of stable distributions, a wide range of applications, and statistical methods, with the final chapters focusing on regression, signal processing, and related distributions. Each chapter ends with a number of carefully chosen exercises. Links to free software are included as well, where readers can put these methods into practice. Univariate Stable Distributions is ideal for advanced undergraduate or graduate students in mathematics, as well as many other fields, such as statistics, economics, engineering, physics, and more. It will also appeal to researchers in probability theory who seek an authoritative reference on stable distributions.
Long-Range Dependence and Self-Similarity
Author: Vladas Pipiras
Publisher: Cambridge University Press
ISBN: 1107039460
Category : Business & Economics
Languages : en
Pages : 693
Book Description
A modern and rigorous introduction to long-range dependence and self-similarity, complemented by numerous more specialized up-to-date topics in this research area.
Publisher: Cambridge University Press
ISBN: 1107039460
Category : Business & Economics
Languages : en
Pages : 693
Book Description
A modern and rigorous introduction to long-range dependence and self-similarity, complemented by numerous more specialized up-to-date topics in this research area.
Extreme Value Theory for Time Series
Author: Thomas Mikosch
Publisher: Springer Nature
ISBN: 3031591569
Category :
Languages : en
Pages : 768
Book Description
Publisher: Springer Nature
ISBN: 3031591569
Category :
Languages : en
Pages : 768
Book Description