Author: Elena Sheka
Publisher: CRC Press
ISBN: 1351858599
Category : Science
Languages : en
Pages : 395
Book Description
Graphene’s nickname ‘miracle material’ normally means the material superior properties. However, all these characteristics are only the outward manifestation of the wonderful nature of graphene. The real miracle of graphene is that the specie is a union of two entities: a physical - and a chemical one, each of which is unique in its own way. The book concerns a very close interrelationship between graphene physics and chemistry as expressed via typical spin effects of a chemical physics origin. Based on quantum-chemical computations, the book is nevertheless addressed to the reflection of physical reality and it is aimed at an understanding of what constitutes graphene as an object of material science – sci graphene – on the one hand, and as a working material- high tech graphene - for a variety of attractive applications largely discussed and debated in the press, on the other. The book is written by a user of quantum chemistry, sufficiently experienced in material science, and the chemical physics of graphene is presented as the user view based on results of extended computational experiments in tight connection with their relevance to physical and chemical realities. The experiments have been carried out at the same theoretical platform, which allows considering different sides of the graphene life at the same level in light of its chemical peculiarity.
Spin Chemical Physics of Graphene
Author: Elena Sheka
Publisher: CRC Press
ISBN: 1351858599
Category : Science
Languages : en
Pages : 395
Book Description
Graphene’s nickname ‘miracle material’ normally means the material superior properties. However, all these characteristics are only the outward manifestation of the wonderful nature of graphene. The real miracle of graphene is that the specie is a union of two entities: a physical - and a chemical one, each of which is unique in its own way. The book concerns a very close interrelationship between graphene physics and chemistry as expressed via typical spin effects of a chemical physics origin. Based on quantum-chemical computations, the book is nevertheless addressed to the reflection of physical reality and it is aimed at an understanding of what constitutes graphene as an object of material science – sci graphene – on the one hand, and as a working material- high tech graphene - for a variety of attractive applications largely discussed and debated in the press, on the other. The book is written by a user of quantum chemistry, sufficiently experienced in material science, and the chemical physics of graphene is presented as the user view based on results of extended computational experiments in tight connection with their relevance to physical and chemical realities. The experiments have been carried out at the same theoretical platform, which allows considering different sides of the graphene life at the same level in light of its chemical peculiarity.
Publisher: CRC Press
ISBN: 1351858599
Category : Science
Languages : en
Pages : 395
Book Description
Graphene’s nickname ‘miracle material’ normally means the material superior properties. However, all these characteristics are only the outward manifestation of the wonderful nature of graphene. The real miracle of graphene is that the specie is a union of two entities: a physical - and a chemical one, each of which is unique in its own way. The book concerns a very close interrelationship between graphene physics and chemistry as expressed via typical spin effects of a chemical physics origin. Based on quantum-chemical computations, the book is nevertheless addressed to the reflection of physical reality and it is aimed at an understanding of what constitutes graphene as an object of material science – sci graphene – on the one hand, and as a working material- high tech graphene - for a variety of attractive applications largely discussed and debated in the press, on the other. The book is written by a user of quantum chemistry, sufficiently experienced in material science, and the chemical physics of graphene is presented as the user view based on results of extended computational experiments in tight connection with their relevance to physical and chemical realities. The experiments have been carried out at the same theoretical platform, which allows considering different sides of the graphene life at the same level in light of its chemical peculiarity.
Spin Chemical Physics of Graphene
Author: Elena Sheka
Publisher: CRC Press
ISBN: 1351858602
Category : Science
Languages : en
Pages : 493
Book Description
Graphene’s nickname ‘miracle material’ normally means the material superior properties. However, all these characteristics are only the outward manifestation of the wonderful nature of graphene. The real miracle of graphene is that the specie is a union of two entities: a physical - and a chemical one, each of which is unique in its own way. The book concerns a very close interrelationship between graphene physics and chemistry as expressed via typical spin effects of a chemical physics origin. Based on quantum-chemical computations, the book is nevertheless addressed to the reflection of physical reality and it is aimed at an understanding of what constitutes graphene as an object of material science – sci graphene – on the one hand, and as a working material- high tech graphene - for a variety of attractive applications largely discussed and debated in the press, on the other. The book is written by a user of quantum chemistry, sufficiently experienced in material science, and the chemical physics of graphene is presented as the user view based on results of extended computational experiments in tight connection with their relevance to physical and chemical realities. The experiments have been carried out at the same theoretical platform, which allows considering different sides of the graphene life at the same level in light of its chemical peculiarity.
Publisher: CRC Press
ISBN: 1351858602
Category : Science
Languages : en
Pages : 493
Book Description
Graphene’s nickname ‘miracle material’ normally means the material superior properties. However, all these characteristics are only the outward manifestation of the wonderful nature of graphene. The real miracle of graphene is that the specie is a union of two entities: a physical - and a chemical one, each of which is unique in its own way. The book concerns a very close interrelationship between graphene physics and chemistry as expressed via typical spin effects of a chemical physics origin. Based on quantum-chemical computations, the book is nevertheless addressed to the reflection of physical reality and it is aimed at an understanding of what constitutes graphene as an object of material science – sci graphene – on the one hand, and as a working material- high tech graphene - for a variety of attractive applications largely discussed and debated in the press, on the other. The book is written by a user of quantum chemistry, sufficiently experienced in material science, and the chemical physics of graphene is presented as the user view based on results of extended computational experiments in tight connection with their relevance to physical and chemical realities. The experiments have been carried out at the same theoretical platform, which allows considering different sides of the graphene life at the same level in light of its chemical peculiarity.
Physics and Chemistry of Graphene
Author: Toshiaki Enoki
Publisher: CRC Press
ISBN: 9814241482
Category : Science
Languages : en
Pages : 478
Book Description
From a chemistry aspect, graphene is the extrapolated extreme of condensed polycyclic hydrocarbon molecules to infinite size. Here, the concept on aromaticity which organic chemists utilize is applicable. Interesting issues appearing between physics and chemistry are pronounced in nano-sized graphene (nanographene), as we recognize the importance of the shape of nanographene in understanding its electronic structure. In this book, the fundamental issues on the electronic, magnetic, and chemical properties of condensed polycyclic hyodrocarbon molecules, nanographene and graphene are comprehensively discussed.
Publisher: CRC Press
ISBN: 9814241482
Category : Science
Languages : en
Pages : 478
Book Description
From a chemistry aspect, graphene is the extrapolated extreme of condensed polycyclic hydrocarbon molecules to infinite size. Here, the concept on aromaticity which organic chemists utilize is applicable. Interesting issues appearing between physics and chemistry are pronounced in nano-sized graphene (nanographene), as we recognize the importance of the shape of nanographene in understanding its electronic structure. In this book, the fundamental issues on the electronic, magnetic, and chemical properties of condensed polycyclic hyodrocarbon molecules, nanographene and graphene are comprehensively discussed.
The Physics of Graphene
Author: Mikhail I. Katsnelson
Publisher: Cambridge University Press
ISBN: 1108597475
Category : Science
Languages : en
Pages : 441
Book Description
Leading graphene research theorist Mikhail I. Katsnelson systematically presents the basic concepts of graphene physics in this fully revised second edition. The author illustrates and explains basic concepts such as Berry phase, scaling, Zitterbewegung, Kubo, Landauer and Mori formalisms in quantum kinetics, chirality, plasmons, commensurate-incommensurate transitions and many others. Open issues and unsolved problems introduce the reader to the latest developments in the field. New achievements and topics presented include the basic concepts of Van der Waals heterostructures, many-body physics of graphene, electronic optics of Dirac electrons, hydrodynamics of electron liquid and the mechanical properties of one atom-thick membranes. Building on an undergraduate-level knowledge of quantum and statistical physics and solid-state theory, this is an important graduate textbook for students in nanoscience, nanotechnology and condensed matter. For physicists and material scientists working in related areas, this is an excellent introduction to the fast-growing field of graphene science.
Publisher: Cambridge University Press
ISBN: 1108597475
Category : Science
Languages : en
Pages : 441
Book Description
Leading graphene research theorist Mikhail I. Katsnelson systematically presents the basic concepts of graphene physics in this fully revised second edition. The author illustrates and explains basic concepts such as Berry phase, scaling, Zitterbewegung, Kubo, Landauer and Mori formalisms in quantum kinetics, chirality, plasmons, commensurate-incommensurate transitions and many others. Open issues and unsolved problems introduce the reader to the latest developments in the field. New achievements and topics presented include the basic concepts of Van der Waals heterostructures, many-body physics of graphene, electronic optics of Dirac electrons, hydrodynamics of electron liquid and the mechanical properties of one atom-thick membranes. Building on an undergraduate-level knowledge of quantum and statistical physics and solid-state theory, this is an important graduate textbook for students in nanoscience, nanotechnology and condensed matter. For physicists and material scientists working in related areas, this is an excellent introduction to the fast-growing field of graphene science.
Graphene
Author: Jamie H. Warner
Publisher: Newnes
ISBN: 0123948274
Category : Technology & Engineering
Languages : en
Pages : 461
Book Description
Providing fundamental knowledge necessary to understand graphene's atomic structure, band-structure, unique properties and an overview of groundbreaking current and emergent applications, this new handbook is essential reading for materials scientists, chemists and physicists.Since the 2010 physics Nobel Prize awarded to Geim and Novosolev for their groundbreaking work isolating graphene from bulk graphite, there has been a huge surge in interest in the area. This has led to a large number of news books on graphene. However, for such a vast inflow of new entrants, the current literature is surprisingly slight, focusing exclusively on current research or books on previous "hot topic" allotropes of carbon.This book covers fundamental groundwork of the structure, property, characterization methods and applications of graphene, along with providing the necessary knowledge of graphene's atomic structure, how it relates to its band-structure and how this in turn leads to the amazing properties of graphene. And so it provides new graduate students and post-docs with a resource that equips them with the knowledge to undertake their research. - Discusses graphene's fundamental structure and properties, acting as a time-saving handbook for validated research - Demonstrates 100+ high-quality graphical representations, providing the reader with clear images to convey complex situations - Reviews characterization techniques relevant to grapheme, equipping the reader with experimental knowledge relevant for practical use rather than just theoretical understanding
Publisher: Newnes
ISBN: 0123948274
Category : Technology & Engineering
Languages : en
Pages : 461
Book Description
Providing fundamental knowledge necessary to understand graphene's atomic structure, band-structure, unique properties and an overview of groundbreaking current and emergent applications, this new handbook is essential reading for materials scientists, chemists and physicists.Since the 2010 physics Nobel Prize awarded to Geim and Novosolev for their groundbreaking work isolating graphene from bulk graphite, there has been a huge surge in interest in the area. This has led to a large number of news books on graphene. However, for such a vast inflow of new entrants, the current literature is surprisingly slight, focusing exclusively on current research or books on previous "hot topic" allotropes of carbon.This book covers fundamental groundwork of the structure, property, characterization methods and applications of graphene, along with providing the necessary knowledge of graphene's atomic structure, how it relates to its band-structure and how this in turn leads to the amazing properties of graphene. And so it provides new graduate students and post-docs with a resource that equips them with the knowledge to undertake their research. - Discusses graphene's fundamental structure and properties, acting as a time-saving handbook for validated research - Demonstrates 100+ high-quality graphical representations, providing the reader with clear images to convey complex situations - Reviews characterization techniques relevant to grapheme, equipping the reader with experimental knowledge relevant for practical use rather than just theoretical understanding
Graphene
Author: Mikhail I. Katsnelson
Publisher: Cambridge University Press
ISBN: 0521195403
Category : Science
Languages : en
Pages : 367
Book Description
An important introduction to graphene, its physics and potentially significant applications, for graduate students, physicists and materials science researchers.
Publisher: Cambridge University Press
ISBN: 0521195403
Category : Science
Languages : en
Pages : 367
Book Description
An important introduction to graphene, its physics and potentially significant applications, for graduate students, physicists and materials science researchers.
Graphene and Its Fascinating Attributes
Author: Swapan K. Pati
Publisher: World Scientific
ISBN: 9814329355
Category : Science
Languages : en
Pages : 287
Book Description
Graphene, a single sheet of graphite, has an unconventional electronic structure that can be described in terms of massless Dirac Fermions. This book presents the frontiers of graphene research ranging from important issues in condensed matter physics and chemistry to advanced device applications.
Publisher: World Scientific
ISBN: 9814329355
Category : Science
Languages : en
Pages : 287
Book Description
Graphene, a single sheet of graphite, has an unconventional electronic structure that can be described in terms of massless Dirac Fermions. This book presents the frontiers of graphene research ranging from important issues in condensed matter physics and chemistry to advanced device applications.
Introduction to Graphene-Based Nanomaterials
Author: Luis E. F. Foa Torres
Publisher: Cambridge University Press
ISBN: 1107030838
Category : Science
Languages : en
Pages : 425
Book Description
A detailed primer describing the most effective theoretical and computational methods and tools for simulating graphene-based systems.
Publisher: Cambridge University Press
ISBN: 1107030838
Category : Science
Languages : en
Pages : 425
Book Description
A detailed primer describing the most effective theoretical and computational methods and tools for simulating graphene-based systems.
2D Metals
Author: Ram Gupta
Publisher: CRC Press
ISBN: 1040151329
Category : Science
Languages : en
Pages : 312
Book Description
2D Metals: Fundamentals, Emerging Applications, and Challenges delves into the state-of- the-art advancements in utilizing 2D metals for emerging applications, encompassing a comprehensive overview of synthetic methodologies and characterization techniques provided by leading experts in the field. 2D nanomaterials have emerged as highly promising candidates for a diverse array of cutting-edge applications, spanning energy and biomedicine, owing to their adjustable electrochemical properties, versatility, and exceptional mechanical resilience. Notably, carbon-based 2D materials have already demonstrated extensive utility across various domains. Meanwhile, 2D metals, often referred to as Metallenes, represent a burgeoning class of materials with broad reaching potential. In contrast to alternative 2D materials like graphene and transition metal chalcogenides, as well as bulk metals, 2D metals exhibit remarkable conductivity, expansive surface area, and customizable electronic and optoelectronic characteristics. This book explores the influence of structural modifications on the properties of 2D metals and addresses the myriad challenges associated with their burgeoning applications. Each chapter, authored by esteemed specialists from across the globe, offers invaluable insights, rendering this book an indispensable resource for students while furnishing researchers and industry professionals with novel guidance and perspectives.
Publisher: CRC Press
ISBN: 1040151329
Category : Science
Languages : en
Pages : 312
Book Description
2D Metals: Fundamentals, Emerging Applications, and Challenges delves into the state-of- the-art advancements in utilizing 2D metals for emerging applications, encompassing a comprehensive overview of synthetic methodologies and characterization techniques provided by leading experts in the field. 2D nanomaterials have emerged as highly promising candidates for a diverse array of cutting-edge applications, spanning energy and biomedicine, owing to their adjustable electrochemical properties, versatility, and exceptional mechanical resilience. Notably, carbon-based 2D materials have already demonstrated extensive utility across various domains. Meanwhile, 2D metals, often referred to as Metallenes, represent a burgeoning class of materials with broad reaching potential. In contrast to alternative 2D materials like graphene and transition metal chalcogenides, as well as bulk metals, 2D metals exhibit remarkable conductivity, expansive surface area, and customizable electronic and optoelectronic characteristics. This book explores the influence of structural modifications on the properties of 2D metals and addresses the myriad challenges associated with their burgeoning applications. Each chapter, authored by esteemed specialists from across the globe, offers invaluable insights, rendering this book an indispensable resource for students while furnishing researchers and industry professionals with novel guidance and perspectives.
Basic Physics of Functionalized Graphite
Author: Pablo D. Esquinazi
Publisher: Springer
ISBN: 3319393553
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description
This book summarizes the basic physics of graphite and newly discovered phenomena in this material. The book contains the knowledge needed to understand novel properties of functionalized graphite demonstrating the occurrence of remarkable phenomena in disordered graphite and graphite-based heterostructures. It also discusses applications of thin graphitic samples in future electronics. Graphite consists of a stack of nearly decoupled two-dimensional graphene planes. Because of the low dimensionality and the presence of Dirac fermions, much of graphite physics resembles that of graphene. On the other hand, the multi-layered nature of the graphite structure together with structural and/or chemical disorder are responsible for phenomena that are not observed yet in graphene, such as ferromagnetic order and superconductivity. Each chapter was written by one or more experts in the field whose contributions were relevant in the (re)discovery of (un)known phenomena in graphite. The book is intended as reference for beginners and experts in the field, introducing them to many aspects of the new physics of graphite, with a fresh overview of recently found phenomena and the theoretical frames to understand them.
Publisher: Springer
ISBN: 3319393553
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description
This book summarizes the basic physics of graphite and newly discovered phenomena in this material. The book contains the knowledge needed to understand novel properties of functionalized graphite demonstrating the occurrence of remarkable phenomena in disordered graphite and graphite-based heterostructures. It also discusses applications of thin graphitic samples in future electronics. Graphite consists of a stack of nearly decoupled two-dimensional graphene planes. Because of the low dimensionality and the presence of Dirac fermions, much of graphite physics resembles that of graphene. On the other hand, the multi-layered nature of the graphite structure together with structural and/or chemical disorder are responsible for phenomena that are not observed yet in graphene, such as ferromagnetic order and superconductivity. Each chapter was written by one or more experts in the field whose contributions were relevant in the (re)discovery of (un)known phenomena in graphite. The book is intended as reference for beginners and experts in the field, introducing them to many aspects of the new physics of graphite, with a fresh overview of recently found phenomena and the theoretical frames to understand them.