Author: J.H. Conway
Publisher: Springer Science & Business Media
ISBN: 1475722494
Category : Mathematics
Languages : en
Pages : 724
Book Description
The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries.
Sphere Packings, Lattices and Groups
Author: J.H. Conway
Publisher: Springer Science & Business Media
ISBN: 1475722494
Category : Mathematics
Languages : en
Pages : 724
Book Description
The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries.
Publisher: Springer Science & Business Media
ISBN: 1475722494
Category : Mathematics
Languages : en
Pages : 724
Book Description
The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problems such as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. Like the first edition, the second edition describes the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analog-to-digital conversion and data compression, n-dimensional crystallography, and dual theory and superstring theory in physics. Results as of 1992 have been added to the text, and the extensive bibliography - itself a contribution to the field - is supplemented with approximately 450 new entries.
Dense Sphere Packings
Author: Thomas Callister Hales
Publisher: Cambridge University Press
ISBN: 0521617707
Category : Mathematics
Languages : en
Pages : 286
Book Description
The definitive account of the recent computer solution of the oldest problem in discrete geometry.
Publisher: Cambridge University Press
ISBN: 0521617707
Category : Mathematics
Languages : en
Pages : 286
Book Description
The definitive account of the recent computer solution of the oldest problem in discrete geometry.
Sphere Packings
Author: Chuanming Zong
Publisher: Springer Science & Business Media
ISBN: 0387227806
Category : Mathematics
Languages : en
Pages : 245
Book Description
Sphere packings is one of the most fascinating and challenging subjects in mathematics. In the course of centuries, many exciting results have been obtained, ingenious methods created, related challenging problems proposed, and many surprising connections with other subjects found. This book gives a full account of this fascinating subject, especially its local aspects, discrete aspects, and its proof methods. The book includes both classical and contemporary results and provides a full treatment of the subject.
Publisher: Springer Science & Business Media
ISBN: 0387227806
Category : Mathematics
Languages : en
Pages : 245
Book Description
Sphere packings is one of the most fascinating and challenging subjects in mathematics. In the course of centuries, many exciting results have been obtained, ingenious methods created, related challenging problems proposed, and many surprising connections with other subjects found. This book gives a full account of this fascinating subject, especially its local aspects, discrete aspects, and its proof methods. The book includes both classical and contemporary results and provides a full treatment of the subject.
Sphere Packings, Lattices and Groups
Author: John H. Conway
Publisher: Springer Science & Business Media
ISBN: 1475720165
Category : Mathematics
Languages : en
Pages : 690
Book Description
The main themes. This book is mainly concerned with the problem of packing spheres in Euclidean space of dimensions 1,2,3,4,5, . . . . Given a large number of equal spheres, what is the most efficient (or densest) way to pack them together? We also study several closely related problems: the kissing number problem, which asks how many spheres can be arranged so that they all touch one central sphere of the same size; the covering problem, which asks for the least dense way to cover n-dimensional space with equal overlapping spheres; and the quantizing problem, important for applications to analog-to-digital conversion (or data compression), which asks how to place points in space so that the average second moment of their Voronoi cells is as small as possible. Attacks on these problems usually arrange the spheres so their centers form a lattice. Lattices are described by quadratic forms, and we study the classification of quadratic forms. Most of the book is devoted to these five problems. The miraculous enters: the E 8 and Leech lattices. When we investigate those problems, some fantastic things happen! There are two sphere packings, one in eight dimensions, the E 8 lattice, and one in twenty-four dimensions, the Leech lattice A , which are unexpectedly good and very 24 symmetrical packings, and have a number of remarkable and mysterious properties, not all of which are completely understood even today.
Publisher: Springer Science & Business Media
ISBN: 1475720165
Category : Mathematics
Languages : en
Pages : 690
Book Description
The main themes. This book is mainly concerned with the problem of packing spheres in Euclidean space of dimensions 1,2,3,4,5, . . . . Given a large number of equal spheres, what is the most efficient (or densest) way to pack them together? We also study several closely related problems: the kissing number problem, which asks how many spheres can be arranged so that they all touch one central sphere of the same size; the covering problem, which asks for the least dense way to cover n-dimensional space with equal overlapping spheres; and the quantizing problem, important for applications to analog-to-digital conversion (or data compression), which asks how to place points in space so that the average second moment of their Voronoi cells is as small as possible. Attacks on these problems usually arrange the spheres so their centers form a lattice. Lattices are described by quadratic forms, and we study the classification of quadratic forms. Most of the book is devoted to these five problems. The miraculous enters: the E 8 and Leech lattices. When we investigate those problems, some fantastic things happen! There are two sphere packings, one in eight dimensions, the E 8 lattice, and one in twenty-four dimensions, the Leech lattice A , which are unexpectedly good and very 24 symmetrical packings, and have a number of remarkable and mysterious properties, not all of which are completely understood even today.
Sphere Packings, Lattices and Groups
Author: John Conway
Publisher: Springer Science & Business Media
ISBN: 1475765681
Category : Mathematics
Languages : en
Pages : 778
Book Description
The third edition of this definitive and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also examine such related issues as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. There is also a description of the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analogue-to-digital conversion and data compression, n-dimensional crystallography, dual theory and superstring theory in physics. New and of special interest is a report on some recent developments in the field, and an updated and enlarged supplementary bibliography with over 800 items.
Publisher: Springer Science & Business Media
ISBN: 1475765681
Category : Mathematics
Languages : en
Pages : 778
Book Description
The third edition of this definitive and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also examine such related issues as the kissing number problem, the covering problem, the quantizing problem, and the classification of lattices and quadratic forms. There is also a description of the applications of these questions to other areas of mathematics and science such as number theory, coding theory, group theory, analogue-to-digital conversion and data compression, n-dimensional crystallography, dual theory and superstring theory in physics. New and of special interest is a report on some recent developments in the field, and an updated and enlarged supplementary bibliography with over 800 items.
From Error-correcting Codes Through Sphere Packings to Simple Groups
Author: Thomas M. Thompson
Publisher:
ISBN: 9780883850008
Category : Error-correcting codes (Information theory)
Languages : en
Pages : 252
Book Description
Publisher:
ISBN: 9780883850008
Category : Error-correcting codes (Information theory)
Languages : en
Pages : 252
Book Description
The Kepler Conjecture
Author: Jeffrey C. Lagarias
Publisher: Springer Science & Business Media
ISBN: 1461411297
Category : Mathematics
Languages : en
Pages : 470
Book Description
The Kepler conjecture, one of geometry's oldest unsolved problems, was formulated in 1611 by Johannes Kepler and mentioned by Hilbert in his famous 1900 problem list. The Kepler conjecture states that the densest packing of three-dimensional Euclidean space by equal spheres is attained by the “cannonball" packing. In a landmark result, this was proved by Thomas C. Hales and Samuel P. Ferguson, using an analytic argument completed with extensive use of computers. This book centers around six papers, presenting the detailed proof of the Kepler conjecture given by Hales and Ferguson, published in 2006 in a special issue of Discrete & Computational Geometry. Further supporting material is also presented: a follow-up paper of Hales et al (2010) revising the proof, and describing progress towards a formal proof of the Kepler conjecture. For historical reasons, this book also includes two early papers of Hales that indicate his original approach to the conjecture. The editor's two introductory chapters situate the conjecture in a broader historical and mathematical context. These chapters provide a valuable perspective and are a key feature of this work.
Publisher: Springer Science & Business Media
ISBN: 1461411297
Category : Mathematics
Languages : en
Pages : 470
Book Description
The Kepler conjecture, one of geometry's oldest unsolved problems, was formulated in 1611 by Johannes Kepler and mentioned by Hilbert in his famous 1900 problem list. The Kepler conjecture states that the densest packing of three-dimensional Euclidean space by equal spheres is attained by the “cannonball" packing. In a landmark result, this was proved by Thomas C. Hales and Samuel P. Ferguson, using an analytic argument completed with extensive use of computers. This book centers around six papers, presenting the detailed proof of the Kepler conjecture given by Hales and Ferguson, published in 2006 in a special issue of Discrete & Computational Geometry. Further supporting material is also presented: a follow-up paper of Hales et al (2010) revising the proof, and describing progress towards a formal proof of the Kepler conjecture. For historical reasons, this book also includes two early papers of Hales that indicate his original approach to the conjecture. The editor's two introductory chapters situate the conjecture in a broader historical and mathematical context. These chapters provide a valuable perspective and are a key feature of this work.
Introduction to Circle Packing
Author: Kenneth Stephenson
Publisher: Cambridge University Press
ISBN: 9780521823562
Category : Mathematics
Languages : en
Pages : 380
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 9780521823562
Category : Mathematics
Languages : en
Pages : 380
Book Description
Publisher Description
Least Action Principle of Crystal Formation of Dense Packing Type and Kepler's Conjecture
Author: Wu Yi Hsiang
Publisher: World Scientific
ISBN: 9789812384911
Category : Mathematics
Languages : en
Pages : 444
Book Description
The dense packing of microscopic spheres (i.e. atoms) is the basic geometric arrangement in crystals of mono-atomic elements with weak covalent bonds, which achieves the optimal known density of p/OeU18. In 1611, Johannes Kepler had already conjectured that p/OeU18 should be the optimal density of sphere packings. Thus, the central problems in the study of sphere packings are the proof of Kepler''s conjecture that p/OeU18 is the optimal density, and the establishing of the least action principle that the hexagonal dense packings in crystals are the geometric consequence of optimization of density. This important book provides a self-contained proof of both, using vector algebra and spherical geometry as the main techniques and in the tradition of classical geometry."
Publisher: World Scientific
ISBN: 9789812384911
Category : Mathematics
Languages : en
Pages : 444
Book Description
The dense packing of microscopic spheres (i.e. atoms) is the basic geometric arrangement in crystals of mono-atomic elements with weak covalent bonds, which achieves the optimal known density of p/OeU18. In 1611, Johannes Kepler had already conjectured that p/OeU18 should be the optimal density of sphere packings. Thus, the central problems in the study of sphere packings are the proof of Kepler''s conjecture that p/OeU18 is the optimal density, and the establishing of the least action principle that the hexagonal dense packings in crystals are the geometric consequence of optimization of density. This important book provides a self-contained proof of both, using vector algebra and spherical geometry as the main techniques and in the tradition of classical geometry."
The Pursuit of Perfect Packing
Author: Denis Weaire
Publisher: CRC Press
ISBN: 142003331X
Category : Mathematics
Languages : en
Pages : 147
Book Description
In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, phy
Publisher: CRC Press
ISBN: 142003331X
Category : Mathematics
Languages : en
Pages : 147
Book Description
In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, phy