Spectroscopy of Condensed Media

Spectroscopy of Condensed Media PDF Author: C.H. Wang
Publisher: Elsevier
ISBN: 0323153704
Category : Science
Languages : en
Pages : 371

Get Book Here

Book Description
Spectroscopy of Condensed Media: Dynamics of Molecular Interactions discusses the use of molecular spectroscopy (including nuclear magnetic resonance [NMR] and nonlinear optical spectroscopy) in dynamic processes in condensed molecular systems. The book reviews relationship between transition probability and the time-correlation function of an isotropic electric dipole system, linear-response theory, and light scattering resulting from the translational motion of molecules in fluids. The text describes molecular rotation, theories of angular momentum, nuclear magnetic resonance, and spontaneous and coherent Raman effects. Closely related with the Raman and Brillouin scattering are vibrational dephasing, relaxation processes, and dynamics of phase transition solids. The book highlights the advantages of using NMR and also explains the basic concepts, such as local field, spin temperature, and effective Hamiltonians, that are employed in interpreting NMR experiments. The investigator can use nonlinear optical spectroscopy to study condensed matter. The text also cites two methods in which the investigator can control the time-dependent average Hamiltonian by (1) manipulating the intensity, timing, phase of the pulses, or (2) by sample spinning. The book is intended for advanced graduate students in physical chemistry that will equally benefit both investigators and scientists involved in physics research.

Spectroscopy of Condensed Media

Spectroscopy of Condensed Media PDF Author: C.H. Wang
Publisher: Elsevier
ISBN: 0323153704
Category : Science
Languages : en
Pages : 371

Get Book Here

Book Description
Spectroscopy of Condensed Media: Dynamics of Molecular Interactions discusses the use of molecular spectroscopy (including nuclear magnetic resonance [NMR] and nonlinear optical spectroscopy) in dynamic processes in condensed molecular systems. The book reviews relationship between transition probability and the time-correlation function of an isotropic electric dipole system, linear-response theory, and light scattering resulting from the translational motion of molecules in fluids. The text describes molecular rotation, theories of angular momentum, nuclear magnetic resonance, and spontaneous and coherent Raman effects. Closely related with the Raman and Brillouin scattering are vibrational dephasing, relaxation processes, and dynamics of phase transition solids. The book highlights the advantages of using NMR and also explains the basic concepts, such as local field, spin temperature, and effective Hamiltonians, that are employed in interpreting NMR experiments. The investigator can use nonlinear optical spectroscopy to study condensed matter. The text also cites two methods in which the investigator can control the time-dependent average Hamiltonian by (1) manipulating the intensity, timing, phase of the pulses, or (2) by sample spinning. The book is intended for advanced graduate students in physical chemistry that will equally benefit both investigators and scientists involved in physics research.

Condensed Matter Optical Spectroscopy

Condensed Matter Optical Spectroscopy PDF Author: Iulian Ionita
Publisher: CRC Press
ISBN: 1466569573
Category : Science
Languages : en
Pages : 410

Get Book Here

Book Description
Discover a Modern Approach to the Study of Molecular SymmetryClassroom-tested from an author experienced in teaching a course on condensed matter spectroscopy, and introductory spectroscopy and lasers, Condensed Matter Optical Spectroscopy: An Illustrated Introduction contains over 200 color illustrations and provides a clear overview of the field.

Condensed-Phase Molecular Spectroscopy and Photophysics

Condensed-Phase Molecular Spectroscopy and Photophysics PDF Author: Anne Myers Kelley
Publisher: John Wiley & Sons
ISBN: 1118493060
Category : Science
Languages : en
Pages : 252

Get Book Here

Book Description
An introduction to one of the fundamental tools in chemical research—spectroscopy and photophysics in condensed-phase and extended systems A great deal of modern research in chemistry and materials science involves the interaction of radiation with condensed-phase systems such as molecules in liquids and solids as well as molecules in more complex media, molecular aggregates, metals, semiconductors, and composites. Condensed-Phase Molecular Spectroscopy and Photophysics was developed to fill the need for a textbook that introduces the basics of traditional molecular spectroscopy with a strong emphasis on condensed-phase systems. It also examines optical processes in extended systems such as metals, semiconductors, and conducting polymers, and addresses the unique optical properties of nanoscale systems. Condensed-Phase Molecular Spectroscopy and Photophysics begins with an introduction to quantum mechanics that sets a solid foundation for understanding the text's subsequent topics, including: Electromagnetic radiation and radiation-matter interactions Molecular vibrations and infrared spectroscopy Electronic spectroscopy Photophysical processes and light scattering Nonlinear and pump-probe spectroscopies Electron transfer processes Each chapter contains problems ranging from simple to complex, enabling readers to gradually build their skills and problem-solving abilities. Written for upper-level undergraduate and graduate courses in physical and materials chemistry, this text is uniquely designed to equip readers to solve a broad array of current problems and challenges in chemistry.

Core Level Spectroscopy of Solids

Core Level Spectroscopy of Solids PDF Author: Frank de Groot
Publisher: CRC Press
ISBN: 1420008420
Category : Science
Languages : en
Pages : 512

Get Book Here

Book Description
Core level spectroscopy has become a powerful tool in the study of electronic states in solids. From fundamental aspects to the most recent developments, Core Level Spectroscopy of Solids presents the theoretical calculations, experimental data, and underlying physics of x-ray photoemission spectroscopy (XPS), x-ray absorption spectroscopy (XAS), x

Spectroscopy of Crystals Containing Rare Earth Ions

Spectroscopy of Crystals Containing Rare Earth Ions PDF Author: A.A. Kaplyanskii
Publisher: Elsevier
ISBN: 0444598278
Category : Science
Languages : en
Pages : 767

Get Book Here

Book Description
``Spectroscopy of Crystals Containing Rare Earth Ions'' contains chapters on some key problems selected from a broad range of spectroscopic studies of RE-activated solids including both crystalline and glassy materials. Progress in crystal field theory is surveyed, an area which is basic to our understanding of the energy levels. The treatment of dynamical properties includes studies of coherence phenomena in isolated ions, energy transfer between ions and co-operative phenomena associated with ion-ion and ion-lattice interactions. In addition, the role of electron spins and nuclear spins is studied by light scattering and double resonance techniques. The presence of inhomogeneous broadening of spectral lines is observed and studied in many contexts, leading to new insights into general problems of the disordered state. Considerable attention is devoted to describing new experimental techniques whose development is of prime importance for progress in the spectroscopy of RE-activated solids. Many of these rely on the development and application of tunable lasers. At the moment this is a very active field of spectroscopy with more exciting developments likely to occur in the future.

Laser Optoacoustic Spectroscopy

Laser Optoacoustic Spectroscopy PDF Author: V.P. Zharov
Publisher: Springer
ISBN: 3540394923
Category : Science
Languages : en
Pages : 336

Get Book Here

Book Description
The optoacoustic method has by now an almost one-centurY-long history of appl ication in spectroscopy, but it was only with the advent of the laser that it became a convenient and effective method among the vast family of spectroscopy techniques. The great variety of these techniques is capable of tackling most diversified tasks, such as the achievement of a high sensitiv ity and a high spectral or temporal resolution. The optoacoustic method is one of the simplest and most versatile ways to attain a high sensitivity for both gaseous and condensed media. It is precisely for this reason that the method has found wide use, and that we have decided to publish a mono graph reviewing the information on this method available in the literature and gathered by us at the Institute of Spectroscopy during the past few years. We hope that such a systematic exposition of the material scattered throughout numerous scientific journals will be of use to many potential readers. The reader will undoubtedly notice the absence in our monograph of references to some recent works, but unfortunately, this is inevitable when the translation and publication of a book in a foreign language takes sev eral years. Nevertheless, we tried our best to cover the entire field from the material available to us, but unfortunately, some recent publications might be missing due to the time lag for the translation and publication in a language foreign to us.

Grants and Awards for the Fiscal Year Ended ...

Grants and Awards for the Fiscal Year Ended ... PDF Author: National Science Foundation (U.S.)
Publisher:
ISBN:
Category : Federal aid to research
Languages : en
Pages : 258

Get Book Here

Book Description


Quantitative Infrared Spectroscopy for Understanding of a Condensed Matter

Quantitative Infrared Spectroscopy for Understanding of a Condensed Matter PDF Author: Takeshi Hasegawa
Publisher: Springer
ISBN: 4431564934
Category : Science
Languages : en
Pages : 207

Get Book Here

Book Description
This book is intended to provide a course of infrared spectroscopy for quantitative analysis, covering both bulk matter and surface/interface analyses. Although the technology of Fourier transform infrared (FT-IR) spectroscopy was established many years ago, the full potential of infrared spectroscopy has not been properly recognized, and its intrinsic potential is still put aside. FT-IR has outstandingly useful characteristics, however, represented by the high sensitivity for monolayer analysis, highly reliable quantitativity, and reproducibility, which are quite suitable for surface and interface analysis. Because infrared spectroscopy provides rich chemical information—for example, hydrogen bonding, molecular conformation, orientation, aggregation, and crystallinity—FT-IR should be the first choice of chemical analysis in a laboratory. In this book, various analytical techniques and basic knowledge of infrared spectroscopy are described in a uniform manner. In particular, techniques for quantitative understanding are particularly focused for the reader’s convenience.

Molecular Spectroscopy of Dynamically Compressed Materials

Molecular Spectroscopy of Dynamically Compressed Materials PDF Author: David S. Moore
Publisher: Springer Nature
ISBN: 9811924201
Category : Science
Languages : en
Pages : 243

Get Book Here

Book Description
This book offers historical and state-of-the-art molecular spectroscopy methods and applications in dynamic compression science, aimed at the upcoming generation in physical sciences involved in studies of materials at extremes. It begins with addressing the motivation for probing shock compressed molecular materials with spectroscopy and then reviews historical developments and the basics of the various spectroscopic methods that have been utilized. Introductory chapters are devoted to fundamentals of molecular spectroscopy, overviews of dynamic compression technologies, and diagnostics used to quantify the shock compression state during spectroscopy experiments. Subsequent chapters describe all the molecular spectroscopic methods used in shock compression research to date, including theory, experimental details for application to shocked materials, and difficulties that can be encountered. Each of these chapters also includes a section comparing static compression results. The last chapter offers an outlook for the future, which leads the next-generation readers to tackling persistent problems.

Laser Spectroscopy for Sensing

Laser Spectroscopy for Sensing PDF Author: Matthieu Baudelet
Publisher: Woodhead Publishing
ISBN: 9780081024843
Category :
Languages : en
Pages : 700

Get Book Here

Book Description
Laser spectroscopy is a valuable tool for sensing and chemical analysis. Developments in lasers, detectors and mathematical analytical tools have led to improvements in the sensitivity and selectivity of spectroscopic techniques and extended their fields of application. Laser Spectroscopy for Sensing, Second Edition examines these advances and how laser spectroscopy can be used in a diverse range of industrial, medical, and environmental applications. The book provides an overview of laser spectroscopy at three levels: the fundamental aspects to consider when planning use of laser spectroscopy to solve a problem (from the sample properties to the laser properties to the data analysis), the technical aspects of several spectroscopic techniques, and the fields of applications of such techniques. In the new edition, key advancements from the field are captured as well as two new chapters on Raman Spectroscopy and Laser-induced breakdown spectroscopy. Laser Spectroscopy for Sensing provides readers with a broad overview of the techniques and applications of laser spectroscopy for sensing. Presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation Explores laser spectroscopy techniques, including Raman spectroscopy and laser-induced breakdown spectroscopy Considers spectroscopic analysis of industrial materials and their applications in nuclear research and industry