Special Values of Automorphic Cohomology Classes

Special Values of Automorphic Cohomology Classes PDF Author: Mark Green
Publisher: American Mathematical Soc.
ISBN: 0821898574
Category : Mathematics
Languages : en
Pages : 158

Get Book Here

Book Description
The authors study the complex geometry and coherent cohomology of nonclassical Mumford-Tate domains and their quotients by discrete groups. Their focus throughout is on the domains which occur as open -orbits in the flag varieties for and , regarded as classifying spaces for Hodge structures of weight three. In the context provided by these basic examples, the authors formulate and illustrate the general method by which correspondence spaces give rise to Penrose transforms between the cohomologies of distinct such orbits with coefficients in homogeneous line bundles.

Cohomology of Arithmetic Groups and Automorphic Forms

Cohomology of Arithmetic Groups and Automorphic Forms PDF Author: Jean-Pierre Labesse
Publisher: Springer
ISBN: 3540468765
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
Cohomology of arithmetic groups serves as a tool in studying possible relations between the theory of automorphic forms and the arithmetic of algebraic varieties resp. the geometry of locally symmetric spaces. These proceedings will serve as a guide to this still rapidly developing area of mathematics. Besides two survey articles, the contributions are original research papers.

Spectral Means of Central Values of Automorphic L-Functions for GL(2)

Spectral Means of Central Values of Automorphic L-Functions for GL(2) PDF Author: Masao Tsuzuki
Publisher: American Mathematical Soc.
ISBN: 1470410192
Category : Mathematics
Languages : en
Pages : 144

Get Book Here

Book Description
Starting with Green's functions on adele points of considered over a totally real number field, the author elaborates an explicit version of the relative trace formula, whose spectral side encodes the informaton on period integrals of cuspidal waveforms along a maximal split torus. As an application, he proves two kinds of asymptotic mean formula for certain central -values attached to cuspidal waveforms with square-free level.

Special Values of Automorphic Cohomology Classes

Special Values of Automorphic Cohomology Classes PDF Author: Mark Green
Publisher:
ISBN: 9781470417246
Category : Automorphic forms
Languages : en
Pages : 145

Get Book Here

Book Description
"Volume 231, number 1088 (fifth of 5 numbers), September 2014."

Eisenstein Cohomology for GLN and the Special Values of Rankin–Selberg L-Functions

Eisenstein Cohomology for GLN and the Special Values of Rankin–Selberg L-Functions PDF Author: Günter Harder
Publisher: Princeton University Press
ISBN: 0691197881
Category : Mathematics
Languages : en
Pages : 234

Get Book Here

Book Description
Introduction -- The cohomology of GLn -- Analytic tools -- Boundary cohomology -- The strongly inner spectrum and applications -- Eisenstein cohomology -- L-functions -- Harish-Chandra modules over Z / by Günter Harder -- Archimedean intertwining operator / by Uwe Weselmann.

Period Functions for Maass Wave Forms and Cohomology

Period Functions for Maass Wave Forms and Cohomology PDF Author: R. Bruggeman
Publisher: American Mathematical Soc.
ISBN: 1470414074
Category : Mathematics
Languages : en
Pages : 150

Get Book Here

Book Description
The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups Γ⊂PSL2(R). In the case that Γ is the modular group PSL2(Z) this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions. The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal series representation. This enables them to describe cohomology groups isomorphic to spaces of Maass cusp forms, spaces spanned by residues of Eisenstein series, and spaces of all Γ-invariant eigenfunctions of the Laplace operator. For spaces of Maass cusp forms the authors also describe isomorphisms to parabolic cohomology groups with smooth coefficients and standard cohomology groups with distribution coefficients. They use the latter correspondence to relate the Petersson scalar product to the cup product in cohomology.

The Optimal Version of Hua's Fundamental Theorem of Geometry of Rectangular Matrices

The Optimal Version of Hua's Fundamental Theorem of Geometry of Rectangular Matrices PDF Author: Peter Šemrl
Publisher: American Mathematical Soc.
ISBN: 0821898450
Category : Mathematics
Languages : en
Pages : 86

Get Book Here

Book Description
Hua's fundamental theorem of geometry of matrices describes the general form of bijective maps on the space of all m\times n matrices over a division ring \mathbb{D} which preserve adjacency in both directions. Motivated by several applications the author studies a long standing open problem of possible improvements. There are three natural questions. Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only and still get the same conclusion? Can we relax the bijectivity assumption? Can we obtain an analogous result for maps acting between the spaces of rectangular matrices of different sizes? A division ring is said to be EAS if it is not isomorphic to any proper subring. For matrices over EAS division rings the author solves all three problems simultaneously, thus obtaining the optimal version of Hua's theorem. In the case of general division rings he gets such an optimal result only for square matrices and gives examples showing that it cannot be extended to the non-square case.

Level One Algebraic Cusp Forms of Classical Groups of Small Rank

Level One Algebraic Cusp Forms of Classical Groups of Small Rank PDF Author: Gaëtan Chenevier
Publisher: American Mathematical Soc.
ISBN: 147041094X
Category : Mathematics
Languages : en
Pages : 134

Get Book Here

Book Description
The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of GLn over Q of any given infinitesimal character, for essentially all n≤8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain semisimple Z-forms of the compact groups SO7, SO8, SO9 (and G2) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the 121 even lattices of rank 25 and determinant 2 found by Borcherds, to level one self-dual automorphic representations of GLn with trivial infinitesimal character, and to vector valued Siegel modular forms of genus 3. A part of the authors' results are conditional to certain expected results in the theory of twisted endoscopy.

Irreducible Almost Simple Subgroups of Classical Algebraic Groups

Irreducible Almost Simple Subgroups of Classical Algebraic Groups PDF Author: Timothy C. Burness
Publisher: American Mathematical Soc.
ISBN: 147041046X
Category : Mathematics
Languages : en
Pages : 122

Get Book Here

Book Description
Let be a simple classical algebraic group over an algebraically closed field of characteristic with natural module . Let be a closed subgroup of and let be a nontrivial -restricted irreducible tensor indecomposable rational -module such that the restriction of to is irreducible. In this paper the authors classify the triples of this form, where and is a disconnected almost simple positive-dimensional closed subgroup of acting irreducibly on . Moreover, by combining this result with earlier work, they complete the classification of the irreducible triples where is a simple algebraic group over , and is a maximal closed subgroup of positive dimension.

Advances in the Theory of Automorphic Forms and Their $L$-functions

Advances in the Theory of Automorphic Forms and Their $L$-functions PDF Author: Dihua Jiang
Publisher: American Mathematical Soc.
ISBN: 147041709X
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
This volume contains the proceedings of the workshop on “Advances in the Theory of Automorphic Forms and Their L-functions” held in honor of James Cogdell's 60th birthday, held from October 16–25, 2013, at the Erwin Schrödinger Institute (ESI) at the University of Vienna. The workshop and the papers contributed to this volume circle around such topics as the theory of automorphic forms and their L-functions, geometry and number theory, covering some of the recent approaches and advances to these subjects. Specifically, the papers cover aspects of representation theory of p-adic groups, classification of automorphic representations through their Fourier coefficients and their liftings, L-functions for classical groups, special values of L-functions, Howe duality, subconvexity for L-functions, Kloosterman integrals, arithmetic geometry and cohomology of arithmetic groups, and other important problems on L-functions, nodal sets and geometry.