Special Issue on 'mathematical Modeling and Physical Dynamics of Solitary Waves: from Continuum Mechanics to Field Theory'

Special Issue on 'mathematical Modeling and Physical Dynamics of Solitary Waves: from Continuum Mechanics to Field Theory' PDF Author: Ivan C. Christov
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Special Issue on 'mathematical Modeling and Physical Dynamics of Solitary Waves: from Continuum Mechanics to Field Theory'

Special Issue on 'mathematical Modeling and Physical Dynamics of Solitary Waves: from Continuum Mechanics to Field Theory' PDF Author: Ivan C. Christov
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Nonlinear Waves and Solitons on Contours and Closed Surfaces

Nonlinear Waves and Solitons on Contours and Closed Surfaces PDF Author: Andrei Ludu
Publisher: Springer Science & Business Media
ISBN: 364222895X
Category : Science
Languages : en
Pages : 498

Get Book Here

Book Description
This volume is an introduction to nonlinear waves and soliton theory in the special environment of compact spaces such a closed curves and surfaces and other domain contours. It assumes familiarity with basic soliton theory and nonlinear dynamical systems. The first part of the book introduces the mathematical concept required for treating the manifolds considered, providing relevant notions from topology and differential geometry. An introduction to the theory of motion of curves and surfaces - as part of the emerging field of contour dynamics - is given. The second and third parts discuss the modeling of various physical solitons on compact systems, such as filaments, loops and drops made of almost incompressible materials thereby intersecting with a large number of physical disciplines from hydrodynamics to compact object astrophysics. This book is intended for graduate students and researchers in mathematics, physics and engineering. This new edition has been thoroughly revised, expanded and updated.

Nonlinear Physical Systems

Nonlinear Physical Systems PDF Author: Oleg N. Kirillov
Publisher: John Wiley & Sons
ISBN: 111857754X
Category : Mathematics
Languages : en
Pages : 328

Get Book Here

Book Description
Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems. Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics, and dissipation-induced instabilities are treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. Each chapter contains mechanical and physical examples, and the combination of advanced material and more tutorial elements makes this book attractive for both experts and non-specialists keen to expand their knowledge on modern methods and trends in stability theory. Contents 1. Surprising Instabilities of Simple Elastic Structures, Davide Bigoni, Diego Misseroni, Giovanni Noselli and Daniele Zaccaria. 2. WKB Solutions Near an Unstable Equilibrium and Applications, Jean-François Bony, Setsuro Fujiié, Thierry Ramond and Maher Zerzeri, partially supported by French ANR project NOSEVOL. 3. The Sign Exchange Bifurcation in a Family of Linear Hamiltonian Systems, Richard Cushman, Johnathan Robbins and Dimitrii Sadovskii. 4. Dissipation Effect on Local and Global Fluid-Elastic Instabilities, Olivier Doaré. 5. Tunneling, Librations and Normal Forms in a Quantum Double Well with a Magnetic Field, Sergey Yu. Dobrokhotov and Anatoly Yu. Anikin. 6. Stability of Dipole Gap Solitons in Two-Dimensional Lattice Potentials, Nir Dror and Boris A. Malomed. 7. Representation of Wave Energy of a Rotating Flow in Terms of the Dispersion Relation, Yasuhide Fukumoto, Makoto Hirota and Youichi Mie. 8. Determining the Stability Domain of Perturbed Four-Dimensional Systems in 1:1 Resonance, Igor Hoveijn and Oleg N. Kirillov. 9. Index Theorems for Polynomial Pencils, Richard Kollár and Radomír Bosák. 10. Investigating Stability and Finding New Solutions in Conservative Fluid Flows Through Bifurcation Approaches, Paolo Luzzatto-Fegiz and Charles H.K. Williamson. 11. Evolution Equations for Finite Amplitude Waves in Parallel Shear Flows, Sherwin A. Maslowe. 12. Continuum Hamiltonian Hopf Bifurcation I, Philip J. Morrison and George I. Hagstrom. 13. Continuum Hamiltonian Hopf Bifurcation II, George I. Hagstrom and Philip J. Morrison. 14. Energy Stability Analysis for a Hybrid Fluid-Kinetic Plasma Model, Philip J. Morrison, Emanuele Tassi and Cesare Tronci. 15. Accurate Estimates for the Exponential Decay of Semigroups with Non-Self-Adjoint Generators, Francis Nier. 16. Stability Optimization for Polynomials and Matrices, Michael L. Overton. 17. Spectral Stability of Nonlinear Waves in KdV-Type Evolution Equations, Dmitry E. Pelinovsky. 18. Unfreezing Casimir Invariants: Singular Perturbations Giving Rise to Forbidden Instabilities, Zensho Yoshida and Philip J. Morrison. About the Authors Oleg N. Kirillov has been a Research Fellow at the Magneto-Hydrodynamics Division of the Helmholtz-Zentrum Dresden-Rossendorf in Germany since 2011. His research interests include non-conservative stability problems of structural mechanics and physics, perturbation theory of non-self-adjoint boundary eigenvalue problems, magnetohydrodynamics, friction-induced oscillations, dissipation-induced instabilities and non-Hermitian problems of optics and microwave physics. Since 2013 he has served as an Associate Editor for the journal Frontiers in Mathematical Physics. Dmitry E. Pelinovsky has been Professor at McMaster University in Canada since 2000. His research profile includes work with nonlinear partial differential equations, discrete dynamical systems, spectral theory, integrable systems, and numerical analysis. He served as the guest editor of the special issue of the journals Chaos in 2005 and Applicable Analysis in 2010. He is an Associate Editor of the journal Communications in Nonlinear Science and Numerical Simulations. This book is devoted to the problems of spectral analysis, stability and bifurcations arising from the nonlinear partial differential equations of modern physics. Leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics present state-of-the-art approaches to a wide spectrum of new challenging stability problems. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynamics and dissipation-induced instabilities will be treated with the use of the theory of Krein and Pontryagin space, index theory, the theory of multi-parameter eigenvalue problems and modern asymptotic and perturbative approaches. All chapters contain mechanical and physical examples and combine both tutorial and advanced sections, making them attractive both to experts in the field and non-specialists interested in knowing more about modern methods and trends in stability theory.

Localization And Solitary Waves In Solid Mechanics

Localization And Solitary Waves In Solid Mechanics PDF Author: Alan R Champneys
Publisher: World Scientific
ISBN: 9814494623
Category : Science
Languages : en
Pages : 398

Get Book Here

Book Description
This book is a collection of recent reprints and new material on fundamentally nonlinear problems in structural systems which demonstrate localized responses to continuous inputs. It has two intended audiences. For mathematicians and physicists it should provide useful new insights into a classical yet rapidly developing area of application of the rich subject of dynamical systems theory. For workers in structural and solid mechanics it introduces a new methodology for dealing with structural localization and the related topic of the generation of solitary waves. Applications range from classical problems such as the buckling of cylindrical shells, twisted rods and pipelines, to the folding of geological strata, the failure of sandwich structures and the propagation of solitary waves in suspended beam systems.

Applied Wave Mathematics II

Applied Wave Mathematics II PDF Author: Arkadi Berezovski
Publisher: Springer Nature
ISBN: 3030299511
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
This book gathers contributions on various aspects of the theory and applications of linear and nonlinear waves and associated phenomena, as well as approaches developed in a global partnership of researchers with the national Centre of Excellence in Nonlinear Studies (CENS) at the Department of Cybernetics of Tallinn University of Technology in Estonia. The papers chiefly focus on the role of mathematics in the analysis of wave phenomena. They highlight the complexity of related topics concerning wave generation, propagation, transformation and impact in solids, gases, fluids and human tissues, while also sharing insights into selected mathematical methods for the analytical and numerical treatment of complex phenomena. In addition, the contributions derive advanced mathematical models, share innovative ideas on computing, and present novel applications for a number of research fields where both linear and nonlinear wave problems play an important role. The papers are written in a tutorial style, intended for non-specialist researchers and students. The authors first describe the basics of a problem that is currently of interest in the scientific community, discuss the state of the art in related research, and then share their own experiences in tackling the problem. Each chapter highlights the importance of applied mathematics for central issues in the study of waves and associated complex phenomena in different media. The topics range from basic principles of wave mechanics up to the mathematics of Planet Earth in the broadest sense, including contemporary challenges in the mathematics of society. In turn, the areas of application range from classic ocean wave mathematics to material science, and to human nerves and tissues. All contributions describe the approaches in a straightforward manner, making them ideal material for educational purposes, e.g. for courses, master class lectures, or seminar presentations.

Waves of What? A Wave Theory of Nature [Volume 2]

Waves of What? A Wave Theory of Nature [Volume 2] PDF Author: James Everitt
Publisher:
ISBN: 9783668143807
Category :
Languages : en
Pages : 376

Get Book Here

Book Description
Document from the year 2016 in the subject Physics - Theoretical Physics, language: English, abstract: Following from an introductory overview of the conception and process of theory, the text is divided into four parts (Volume 2 includes part 3 and part 4), the first of which deals with the theory and model itself of a unitary cohesive field, including a basic guide to its mathematical treatment; the second part with the derivation of a value for the 'fine structure constant' based on its principles of mathematical or geometrical harmonics within the context of the implication of this constant in the conventional descriptions of electron spin: e.g. in the description of an electron 'magnetic dipole moment' using a 'gs factor'. While the primary aim of the first part is to establish a model within which a geometric basis in mathematical harmonics may be proposed for the value of that constant, the more general intention is to introduce a viable model of the operation of an entirely exclusive singular cohesive principle for the consideration of any and all data according to this conception of a unitary field; therefore to establish that the existing descriptions and equations of Quantum Electro-Dynamics and Quantum Field Theory may, with an appropriately unifying perspective provided by such a model, be correlated directly with a real physical dynamic: the wave principle inherent within such a 'unitary cohesive field'. [...] The argument is therefore principally twofold: first, that the lattice model of the cohesive field proposed may be regarded as an adequate description of cohesive dynamics within an inherently integrating unity, thus that its basic geometric or 'harmonically-defined' ratios may be applied to a description of reality in conventionally quantitative terms of mass, velocity, charge, and more particularly to the relation between such quantities described by various physical and dimensionless constants whose values are considered to be based on th

Solitary Waves in Fluids

Solitary Waves in Fluids PDF Author: R. Grimshaw
Publisher: WIT Press
ISBN: 1845641574
Category : Science
Languages : en
Pages : 209

Get Book Here

Book Description
Edited by R.H.J. Grimshaw, this book covers the topic of solitary waves in fluids.

Waves Called Solitons

Waves Called Solitons PDF Author: Michel Remoissenet
Publisher: Springer Science & Business Media
ISBN: 3662037904
Category : Science
Languages : en
Pages : 353

Get Book Here

Book Description
Written for an interdisciplinary readership, this book is a practical guide to the fascinating world of solitons. The author approaches the subject from the standpoint of applications in optics, hydrodynamics, and electrical and chemical engineering. This third edition has been thoroughly revised and updated.

Soliton Theory and Its Applications

Soliton Theory and Its Applications PDF Author: Chaohao Gu
Publisher: Springer Science & Business Media
ISBN: 3662031027
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
Soliton theory is an important branch of applied mathematics and mathematical physics. An active and productive field of research, it has important applications in fluid mechanics, nonlinear optics, classical and quantum fields theories etc. This book presents a broad view of soliton theory. It gives an expository survey of the most basic ideas and methods, such as physical background, inverse scattering, Backlünd transformations, finite-dimensional completely integrable systems, symmetry, Kac-moody algebra, solitons and differential geometry, numerical analysis for nonlinear waves, and gravitational solitons. Besides the essential points of the theory, several applications are sketched and some recent developments, partly by the authors and their collaborators, are presented.

Dispersive Shallow Water Waves

Dispersive Shallow Water Waves PDF Author: Gayaz Khakimzyanov
Publisher: Springer Nature
ISBN: 3030462676
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
This monograph presents cutting-edge research on dispersive wave modelling, and the numerical methods used to simulate the propagation and generation of long surface water waves. Including both an overview of existing dispersive models, as well as recent breakthroughs, the authors maintain an ideal balance between theory and applications. From modelling tsunami waves to smaller scale coastal processes, this book will be an indispensable resource for those looking to be brought up-to-date in this active area of scientific research. Beginning with an introduction to various dispersive long wave models on the flat space, the authors establish a foundation on which readers can confidently approach more advanced mathematical models and numerical techniques. The first two chapters of the book cover modelling and numerical simulation over globally flat spaces, including adaptive moving grid methods along with the operator splitting approach, which was historically proposed at the Institute of Computational Technologies at Novosibirsk. Later chapters build on this to explore high-end mathematical modelling of the fluid flow over deformed and rotating spheres using the operator splitting approach. The appendices that follow further elaborate by providing valuable insight into long wave models based on the potential flow assumption, and modified intermediate weakly nonlinear weakly dispersive equations. Dispersive Shallow Water Waves will be a valuable resource for researchers studying theoretical or applied oceanography, nonlinear waves as well as those more broadly interested in free surface flow dynamics.