Author: Yair N. Minsky
Publisher: Cambridge University Press
ISBN: 1139447211
Category : Mathematics
Languages : en
Pages : 399
Book Description
The subject of Kleinian groups and hyperbolic 3-manifolds is currently undergoing explosively fast development. This volume contains important expositions on topics such as topology and geometry of 3-manifolds, curve complexes, classical Ahlfors-Bers theory and computer explorations. Researchers in these and related areas will find much of interest here.
Spaces of Kleinian Groups
Author: Yair N. Minsky
Publisher: Cambridge University Press
ISBN: 1139447211
Category : Mathematics
Languages : en
Pages : 399
Book Description
The subject of Kleinian groups and hyperbolic 3-manifolds is currently undergoing explosively fast development. This volume contains important expositions on topics such as topology and geometry of 3-manifolds, curve complexes, classical Ahlfors-Bers theory and computer explorations. Researchers in these and related areas will find much of interest here.
Publisher: Cambridge University Press
ISBN: 1139447211
Category : Mathematics
Languages : en
Pages : 399
Book Description
The subject of Kleinian groups and hyperbolic 3-manifolds is currently undergoing explosively fast development. This volume contains important expositions on topics such as topology and geometry of 3-manifolds, curve complexes, classical Ahlfors-Bers theory and computer explorations. Researchers in these and related areas will find much of interest here.
Complex Kleinian Groups
Author: Angel Cano
Publisher: Springer Science & Business Media
ISBN: 3034804814
Category : Mathematics
Languages : en
Pages : 288
Book Description
This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.
Publisher: Springer Science & Business Media
ISBN: 3034804814
Category : Mathematics
Languages : en
Pages : 288
Book Description
This monograph lays down the foundations of the theory of complex Kleinian groups, a newly born area of mathematics whose origin traces back to the work of Riemann, Poincaré, Picard and many others. Kleinian groups are, classically, discrete groups of conformal automorphisms of the Riemann sphere, and these can be regarded too as being groups of holomorphic automorphisms of the complex projective line CP1. When going into higher dimensions, there is a dichotomy: Should we look at conformal automorphisms of the n-sphere?, or should we look at holomorphic automorphisms of higher dimensional complex projective spaces? These two theories are different in higher dimensions. In the first case we are talking about groups of isometries of real hyperbolic spaces, an area of mathematics with a long-standing tradition. In the second case we are talking about an area of mathematics that still is in its childhood, and this is the focus of study in this monograph. This brings together several important areas of mathematics, as for instance classical Kleinian group actions, complex hyperbolic geometry, chrystallographic groups and the uniformization problem for complex manifolds.
Kleinian Groups
Author: Bernard Maskit
Publisher: Springer Science & Business Media
ISBN: 3642615902
Category : Mathematics
Languages : en
Pages : 339
Book Description
The modern theory of Kleinian groups starts with the work of Lars Ahlfors and Lipman Bers; specifically with Ahlfors' finiteness theorem, and Bers' observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. From the point of view of uniformizations of Riemann surfaces, Bers' observation has the consequence that the question of understanding the different uniformizations of a finite Riemann surface poses a purely topological problem; it is independent of the conformal structure on the surface. The last two chapters here give a topological description of the set of all (geometrically finite) uniformizations of finite Riemann surfaces. We carefully skirt Ahlfors' finiteness theorem. For groups which uniformize a finite Riemann surface; that is, groups with an invariant component, one can either start with the assumption that the group is finitely generated, and then use the finiteness theorem to conclude that the group represents only finitely many finite Riemann surfaces, or, as we do here, one can start with the assumption that, in the invariant component, the group represents a finite Riemann surface, and then, using essentially topological techniques, reach the same conclusion. More recently, Bill Thurston wrought a revolution in the field by showing that one could analyze Kleinian groups using 3-dimensional hyperbolic geome try, and there is now an active school of research using these methods.
Publisher: Springer Science & Business Media
ISBN: 3642615902
Category : Mathematics
Languages : en
Pages : 339
Book Description
The modern theory of Kleinian groups starts with the work of Lars Ahlfors and Lipman Bers; specifically with Ahlfors' finiteness theorem, and Bers' observation that their joint work on the Beltrami equation has deep implications for the theory of Kleinian groups and their deformations. From the point of view of uniformizations of Riemann surfaces, Bers' observation has the consequence that the question of understanding the different uniformizations of a finite Riemann surface poses a purely topological problem; it is independent of the conformal structure on the surface. The last two chapters here give a topological description of the set of all (geometrically finite) uniformizations of finite Riemann surfaces. We carefully skirt Ahlfors' finiteness theorem. For groups which uniformize a finite Riemann surface; that is, groups with an invariant component, one can either start with the assumption that the group is finitely generated, and then use the finiteness theorem to conclude that the group represents only finitely many finite Riemann surfaces, or, as we do here, one can start with the assumption that, in the invariant component, the group represents a finite Riemann surface, and then, using essentially topological techniques, reach the same conclusion. More recently, Bill Thurston wrought a revolution in the field by showing that one could analyze Kleinian groups using 3-dimensional hyperbolic geome try, and there is now an active school of research using these methods.
Hyperbolic Manifolds and Kleinian Groups
Author: Katsuhiko Matsuzaki
Publisher: Clarendon Press
ISBN: 0191591203
Category : Mathematics
Languages : en
Pages : 265
Book Description
A Kleinian group is a discrete subgroup of the isometry group of hyperbolic 3-space, which is also regarded as a subgroup of Möbius transformations in the complex plane. The present book is a comprehensive guide to theories of Kleinian groups from the viewpoints of hyperbolic geometry and complex analysis. After 1960, Ahlfors and Bers were the leading researchers of Kleinian groups and helped it to become an active area of complex analysis as a branch of Teichmüller theory. Later, Thurston brought a revolution to this area with his profound investigation of hyperbolic manifolds, and at the same time complex dynamical approach was strongly developed by Sullivan. This book provides fundamental results and important theorems which are needed for access to the frontiers of the theory from a modern viewpoint.
Publisher: Clarendon Press
ISBN: 0191591203
Category : Mathematics
Languages : en
Pages : 265
Book Description
A Kleinian group is a discrete subgroup of the isometry group of hyperbolic 3-space, which is also regarded as a subgroup of Möbius transformations in the complex plane. The present book is a comprehensive guide to theories of Kleinian groups from the viewpoints of hyperbolic geometry and complex analysis. After 1960, Ahlfors and Bers were the leading researchers of Kleinian groups and helped it to become an active area of complex analysis as a branch of Teichmüller theory. Later, Thurston brought a revolution to this area with his profound investigation of hyperbolic manifolds, and at the same time complex dynamical approach was strongly developed by Sullivan. This book provides fundamental results and important theorems which are needed for access to the frontiers of the theory from a modern viewpoint.
Geometry and Dynamics of Groups and Spaces
Author: Mikhail Kapranov
Publisher: Springer Science & Business Media
ISBN: 3764386088
Category : Mathematics
Languages : en
Pages : 759
Book Description
Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to his memory. In addition it contains an influential, so far unpublished manuscript by Reznikov of book length. The book further provides an extensive survey on Kleinian groups in higher dimensions and some articles centering on Reznikov as a person.
Publisher: Springer Science & Business Media
ISBN: 3764386088
Category : Mathematics
Languages : en
Pages : 759
Book Description
Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to his memory. In addition it contains an influential, so far unpublished manuscript by Reznikov of book length. The book further provides an extensive survey on Kleinian groups in higher dimensions and some articles centering on Reznikov as a person.
The Global Topology of Deformation Spaces of Kleinian Groups
Author: John H. Holt
Publisher:
ISBN:
Category :
Languages : en
Pages : 154
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 154
Book Description
A Crash Course on Kleinian Groups
Author: L. Bers
Publisher: Springer
ISBN: 354037776X
Category : Mathematics
Languages : en
Pages : 140
Book Description
Publisher: Springer
ISBN: 354037776X
Category : Mathematics
Languages : en
Pages : 140
Book Description
Kleinian Groups and Uniformization in Examples and Problems
Author: Samuil Le_bovich Krushkal_
Publisher: American Mathematical Soc.
ISBN: 9780821898123
Category : Mathematics
Languages : en
Pages : 214
Book Description
Aimed at researchers, graduate students and undergraduates alike, this book presents a unified exposition of all the main areas and methods of the theory of Kleinian groups and the theory of uniformization of manifolds. The past 20 years have seen a rejuvenation of the field, due to the development of powerful new methods in topology, the theory of functions of several complex variables, and the theory of quasiconformal mappings. Thus this new book should provide a valuable resource, listing the basic facts regarding Kleinian groups and serving as a general guide to the primary literature, particularly the Russian literature in the field. In addition, the book includes a large number of examples, problems, and unsolved problems, many of them presented for the first time.
Publisher: American Mathematical Soc.
ISBN: 9780821898123
Category : Mathematics
Languages : en
Pages : 214
Book Description
Aimed at researchers, graduate students and undergraduates alike, this book presents a unified exposition of all the main areas and methods of the theory of Kleinian groups and the theory of uniformization of manifolds. The past 20 years have seen a rejuvenation of the field, due to the development of powerful new methods in topology, the theory of functions of several complex variables, and the theory of quasiconformal mappings. Thus this new book should provide a valuable resource, listing the basic facts regarding Kleinian groups and serving as a general guide to the primary literature, particularly the Russian literature in the field. In addition, the book includes a large number of examples, problems, and unsolved problems, many of them presented for the first time.
Lipa's Legacy
Author: Józef Dodziuk
Publisher: American Mathematical Soc.
ISBN: 0821806718
Category : Mathematics
Languages : en
Pages : 490
Book Description
The mathematical works of Lars Ahlfors and Lipman Bers are fundamental and lasting. They have influenced and altered the development of twentieth century mathematics. The personalities of these two scientists helped create a mathematical family and have had a permanent positive effect on a whole generation of mathematicians. Their mathematical heritage continues to lead succeeding generations. In the fall of 1994, one year after Bers' death, some members of this family decided to inaugurate a series of conferences, "The Bers Colloquium", to be held every three years. The theme was to be a topic in the Ahlfors-Bers mathematical tradition, broadly interpreted. Ahlfors died a year after the first colloquium; future colloquia in this series will be called "The Ahlfors-Bers Colloquium". The first colloquium was held in October 1995 at the Graduate Center, CUNY in New York. It coincided roughly with the second anniversary of Ber's death. There were six lectures and much informal mathematical discussion. This volume contains papers by the speakers and many of the participants. The broad range of papers indicate how strong and far reaching Ber's influence has been. The topics represented in the book include Teichmuller theory, Kleinian groups, higher dimensional hyperbolic geometry, geometry of numbers, circle packings, theory of discrete groups, classical complex function theory, one dimensional dynamics, fluid dynamics, quasiconformal mappings in higher dimensions, partial differential equations, and classical algebraic geometry. partial
Publisher: American Mathematical Soc.
ISBN: 0821806718
Category : Mathematics
Languages : en
Pages : 490
Book Description
The mathematical works of Lars Ahlfors and Lipman Bers are fundamental and lasting. They have influenced and altered the development of twentieth century mathematics. The personalities of these two scientists helped create a mathematical family and have had a permanent positive effect on a whole generation of mathematicians. Their mathematical heritage continues to lead succeeding generations. In the fall of 1994, one year after Bers' death, some members of this family decided to inaugurate a series of conferences, "The Bers Colloquium", to be held every three years. The theme was to be a topic in the Ahlfors-Bers mathematical tradition, broadly interpreted. Ahlfors died a year after the first colloquium; future colloquia in this series will be called "The Ahlfors-Bers Colloquium". The first colloquium was held in October 1995 at the Graduate Center, CUNY in New York. It coincided roughly with the second anniversary of Ber's death. There were six lectures and much informal mathematical discussion. This volume contains papers by the speakers and many of the participants. The broad range of papers indicate how strong and far reaching Ber's influence has been. The topics represented in the book include Teichmuller theory, Kleinian groups, higher dimensional hyperbolic geometry, geometry of numbers, circle packings, theory of discrete groups, classical complex function theory, one dimensional dynamics, fluid dynamics, quasiconformal mappings in higher dimensions, partial differential equations, and classical algebraic geometry. partial
Selected Works of Lipman Bers
Author: Lipman Bers
Publisher: American Mathematical Soc.
ISBN: 9780821809976
Category : Mathematics
Languages : en
Pages : 642
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821809976
Category : Mathematics
Languages : en
Pages : 642
Book Description