Author: Franz Grieser
Publisher: Elsevier
ISBN: 0128017260
Category : Science
Languages : en
Pages : 299
Book Description
Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the phenomena are simply, but comprehensively presented. In addition, potential industrial and medical applications of acoustic cavitation and its chemical effects are described and reviewed. The book is suitable for graduate students working with ultrasound, and for potential chemists and chemical engineers wanting to understand the basics of how ultrasound acts in a liquid to cause chemical and physical effects. - Experimental methods on acoustic cavitation and sonochemistry - Helps users understand how to readily begin experiments in the field - Provides an understanding of the physics behind the phenomenon - Contains examples of (possible) industrial applications in chemical engineering and environmental technologies - Presents the possibilities for adopting the action of acoustic cavitation with respect to industrial applications
Sonochemistry and the Acoustic Bubble
Author: Franz Grieser
Publisher: Elsevier
ISBN: 0128017260
Category : Science
Languages : en
Pages : 299
Book Description
Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the phenomena are simply, but comprehensively presented. In addition, potential industrial and medical applications of acoustic cavitation and its chemical effects are described and reviewed. The book is suitable for graduate students working with ultrasound, and for potential chemists and chemical engineers wanting to understand the basics of how ultrasound acts in a liquid to cause chemical and physical effects. - Experimental methods on acoustic cavitation and sonochemistry - Helps users understand how to readily begin experiments in the field - Provides an understanding of the physics behind the phenomenon - Contains examples of (possible) industrial applications in chemical engineering and environmental technologies - Presents the possibilities for adopting the action of acoustic cavitation with respect to industrial applications
Publisher: Elsevier
ISBN: 0128017260
Category : Science
Languages : en
Pages : 299
Book Description
Sonochemistry and the Acoustic Bubble provides an introduction to the way ultrasound acts on bubbles in a liquid to cause bubbles to collapse violently, leading to localized 'hot spots' in the liquid with temperatures of 5000° celcius and under pressures of several hundred atmospheres. These extreme conditions produce events such as the emission of light, sonoluminescence, with a lifetime of less than a nanosecond, and free radicals that can initiate a host of varied chemical reactions (sonochemistry) in the liquid, all at room temperature. The physics and chemistry behind the phenomena are simply, but comprehensively presented. In addition, potential industrial and medical applications of acoustic cavitation and its chemical effects are described and reviewed. The book is suitable for graduate students working with ultrasound, and for potential chemists and chemical engineers wanting to understand the basics of how ultrasound acts in a liquid to cause chemical and physical effects. - Experimental methods on acoustic cavitation and sonochemistry - Helps users understand how to readily begin experiments in the field - Provides an understanding of the physics behind the phenomenon - Contains examples of (possible) industrial applications in chemical engineering and environmental technologies - Presents the possibilities for adopting the action of acoustic cavitation with respect to industrial applications
The Acoustic Bubble
Author: T Leighton
Publisher: Academic Press
ISBN: 0323144136
Category : Science
Languages : en
Pages : 641
Book Description
The Acoustic Bubble describes the interaction of acoustic fields with bubbles in liquid. The book consists of five chapters. Chapter 1 provides a basic introduction to acoustics, including some of the more esoteric phenomena that can be seen when high-frequency high-intensity underwater sound is employed. Chapter 2 discusses the nucleation of cavitation and basic fluid dynamics, while Chapter 3 draws together the acoustics and bubble dynamics to discuss the free oscillation of a bubble and acoustic emissions from such activity. The acoustic probes that are often applied to study the behavior of a bubble when an externally-applied acoustic field drives it into oscillation is deliberated in Chapter 4. The last chapter outlines a variety of effects associated with acoustically-induced bubble activity. The bubble detection, sonoluminescence, sonochemistry, and pulse enhancement are also covered. This publication is a good reference for physics and engineering students and researchers intending to acquire knowledge of the acoustic interactions of acoustic fields with bubbles.
Publisher: Academic Press
ISBN: 0323144136
Category : Science
Languages : en
Pages : 641
Book Description
The Acoustic Bubble describes the interaction of acoustic fields with bubbles in liquid. The book consists of five chapters. Chapter 1 provides a basic introduction to acoustics, including some of the more esoteric phenomena that can be seen when high-frequency high-intensity underwater sound is employed. Chapter 2 discusses the nucleation of cavitation and basic fluid dynamics, while Chapter 3 draws together the acoustics and bubble dynamics to discuss the free oscillation of a bubble and acoustic emissions from such activity. The acoustic probes that are often applied to study the behavior of a bubble when an externally-applied acoustic field drives it into oscillation is deliberated in Chapter 4. The last chapter outlines a variety of effects associated with acoustically-induced bubble activity. The bubble detection, sonoluminescence, sonochemistry, and pulse enhancement are also covered. This publication is a good reference for physics and engineering students and researchers intending to acquire knowledge of the acoustic interactions of acoustic fields with bubbles.
Acoustic Cavitation and Bubble Dynamics
Author: Kyuichi Yasui
Publisher: Springer
ISBN: 3319682377
Category : Science
Languages : en
Pages : 131
Book Description
This brief explains in detail fundamental concepts in acoustic cavitation and bubble dynamics, and describes derivations of the fundamental equations of bubble dynamics in order to support those readers just beginning research in this field. Further, it provides an in-depth understanding of the physical basis of the phenomena. With regard to sonochemistry, the brief presents the results of numerical simulations of chemical reactions inside a bubble under ultrasound, especially for a single-bubble system and including unsolved problems. Written so as to be accessible both with and without prior knowledge of fundamental fluid dynamics, the brief offers a valuable resource for students and researchers alike, especially those who are unfamiliar with this field. A grasp of fundamental undergraduate mathematics such as partial derivative and fundamental integration is advantageous; however, even without any background in mathematics, readers can skip the equations and still understand the fundamental physics of the phenomena using the book’s wealth of illustrations and figures. As such, it is also suitable as an introduction to the field.
Publisher: Springer
ISBN: 3319682377
Category : Science
Languages : en
Pages : 131
Book Description
This brief explains in detail fundamental concepts in acoustic cavitation and bubble dynamics, and describes derivations of the fundamental equations of bubble dynamics in order to support those readers just beginning research in this field. Further, it provides an in-depth understanding of the physical basis of the phenomena. With regard to sonochemistry, the brief presents the results of numerical simulations of chemical reactions inside a bubble under ultrasound, especially for a single-bubble system and including unsolved problems. Written so as to be accessible both with and without prior knowledge of fundamental fluid dynamics, the brief offers a valuable resource for students and researchers alike, especially those who are unfamiliar with this field. A grasp of fundamental undergraduate mathematics such as partial derivative and fundamental integration is advantageous; however, even without any background in mathematics, readers can skip the equations and still understand the fundamental physics of the phenomena using the book’s wealth of illustrations and figures. As such, it is also suitable as an introduction to the field.
Sonochemistry and Sonoluminescence
Author: L.A. Crum
Publisher: Springer Science & Business Media
ISBN: 9401592152
Category : Science
Languages : en
Pages : 416
Book Description
Sonochemistry is studied primarily by chemists and sonoluminescence mainly by physicists, but a single physical phenomenon - acoustic cavitation - unites the two areas. The physics of cavitation bubble collapse, is relatively well understood by acoustical physicists but remains practically unknown to the chemists. By contrast, the chemistry that gives rise to electromagnetic emissions and the acceleration of chemical reactions is familiar to chemists, but practically unknown to acoustical physicists. It is just this knowledge gap that the present volume addresses. The first section of the book addresses the fundamentals of cavitation, leading to a more extensive discussion of the fundamentals of cavitation bubble dynamics in section two. A section on single bubble sonoluminescence follows. The two following sections address the new scientific discipline of sonochemistry, and the volume concludes with a section giving detailed descriptions of the applications of sonochemistry. The mixture of tutorial lectures and detailed research articles means that the book can serve as an introduction as well as a comprehensive and detailed review of these two interesting and topical subjects.
Publisher: Springer Science & Business Media
ISBN: 9401592152
Category : Science
Languages : en
Pages : 416
Book Description
Sonochemistry is studied primarily by chemists and sonoluminescence mainly by physicists, but a single physical phenomenon - acoustic cavitation - unites the two areas. The physics of cavitation bubble collapse, is relatively well understood by acoustical physicists but remains practically unknown to the chemists. By contrast, the chemistry that gives rise to electromagnetic emissions and the acceleration of chemical reactions is familiar to chemists, but practically unknown to acoustical physicists. It is just this knowledge gap that the present volume addresses. The first section of the book addresses the fundamentals of cavitation, leading to a more extensive discussion of the fundamentals of cavitation bubble dynamics in section two. A section on single bubble sonoluminescence follows. The two following sections address the new scientific discipline of sonochemistry, and the volume concludes with a section giving detailed descriptions of the applications of sonochemistry. The mixture of tutorial lectures and detailed research articles means that the book can serve as an introduction as well as a comprehensive and detailed review of these two interesting and topical subjects.
Handbook of Ultrasonics and Sonochemistry
Author:
Publisher: Springer
ISBN: 9789812872777
Category : Science
Languages : en
Pages : 0
Book Description
The aim of this handbook is to summarize the recent development in the topic of ultrasonics and sonochemistry, especially in the areas of functional materials and processing applications. This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications. This handbook is divided into five main sections: fundamentals of ultrasonics and sonochemistry, biomaterials, food processing, catalysts, wastewater remediation. Each section and chapter is written by reputable international scholars and industrial experts. The handbook comprehensively covers the fundamentals of sonochemistry along with key applications. The handbook strives to be a self-contained, easily-understandable reference that will also include up to date knowledge based on research articles. This handbook serves to provide a quick and reliable knowledge for new comers from chemistry, bioengineering, food processing, environmental engineering, in both academia and in industrial fields.
Publisher: Springer
ISBN: 9789812872777
Category : Science
Languages : en
Pages : 0
Book Description
The aim of this handbook is to summarize the recent development in the topic of ultrasonics and sonochemistry, especially in the areas of functional materials and processing applications. This handbook will benefit the readers as a full and quick technical reference with a high-level historic review of technology, detailed technical descriptions and the latest practical applications. This handbook is divided into five main sections: fundamentals of ultrasonics and sonochemistry, biomaterials, food processing, catalysts, wastewater remediation. Each section and chapter is written by reputable international scholars and industrial experts. The handbook comprehensively covers the fundamentals of sonochemistry along with key applications. The handbook strives to be a self-contained, easily-understandable reference that will also include up to date knowledge based on research articles. This handbook serves to provide a quick and reliable knowledge for new comers from chemistry, bioengineering, food processing, environmental engineering, in both academia and in industrial fields.
Sonochemistry
Author: Juan Carlos Colmenares
Publisher: Springer
ISBN: 3319542710
Category : Science
Languages : en
Pages : 287
Book Description
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Publisher: Springer
ISBN: 3319542710
Category : Science
Languages : en
Pages : 287
Book Description
The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.
Sonochemical Reactions
Author: Selcan Karakuş
Publisher: BoD – Books on Demand
ISBN: 1838800018
Category : Science
Languages : en
Pages : 162
Book Description
This book was written by authors in the field of ultrasound-assited synthesis and their applications. Among others, some of the topics covered are: ultrasound-assited synthesis of metal/metal oxide nanoparticles, graphene nanosheets, and ultrasound applications. In this book, authors focused on recent studies, applications, and new technological developments on fundamental properties of the ultrasound process.
Publisher: BoD – Books on Demand
ISBN: 1838800018
Category : Science
Languages : en
Pages : 162
Book Description
This book was written by authors in the field of ultrasound-assited synthesis and their applications. Among others, some of the topics covered are: ultrasound-assited synthesis of metal/metal oxide nanoparticles, graphene nanosheets, and ultrasound applications. In this book, authors focused on recent studies, applications, and new technological developments on fundamental properties of the ultrasound process.
Sonoluminescence
Author: F. Ronald Young
Publisher: CRC Press
ISBN: 1135486026
Category : Science
Languages : en
Pages : 362
Book Description
While it is still a mystery of how a low-energy-density sound wave can concentrate enough energy in a small enough volume to cause the emission of light, research in acoustic cavitation and sonoluminescence has lead to plausible theories in which the source of light can be experimentally sustained. It has also lead to promising applications, such a
Publisher: CRC Press
ISBN: 1135486026
Category : Science
Languages : en
Pages : 362
Book Description
While it is still a mystery of how a low-energy-density sound wave can concentrate enough energy in a small enough volume to cause the emission of light, research in acoustic cavitation and sonoluminescence has lead to plausible theories in which the source of light can be experimentally sustained. It has also lead to promising applications, such a
Micro- and Nanobubbles
Author: Hideki Tsuge
Publisher: CRC Press
ISBN: 9814463108
Category : Medical
Languages : en
Pages : 378
Book Description
Microbubbles and nanobubbles have several characteristics that are comparable with millimeter- and centimeter-sized bubbles. These characteristics are their small size, which results in large surface area and high bioactivity, low rising velocity, decreased friction drag, high internal pressure, large gas dissolution capacity, negatively charged surface, and ability to be crushed and form free radicals. Microbubbles and nanobubbles have found applications in a variety of fields such as engineering, agriculture, environment, food, and medicine. Microbubbles have been successfully used in aquacultures of oysters in Hiroshima, scallops in Hokkaido, and pearls in Mie Prefecture, Japan. This field has shown a strong potential for growth. This book comprehensively discusses microbubbles and nanobubbles and their application in aquaculture, environment, engineering, medicine, stock raising, agriculture, and marine industry. It presents their potential as a new technology that can be utilized globally.
Publisher: CRC Press
ISBN: 9814463108
Category : Medical
Languages : en
Pages : 378
Book Description
Microbubbles and nanobubbles have several characteristics that are comparable with millimeter- and centimeter-sized bubbles. These characteristics are their small size, which results in large surface area and high bioactivity, low rising velocity, decreased friction drag, high internal pressure, large gas dissolution capacity, negatively charged surface, and ability to be crushed and form free radicals. Microbubbles and nanobubbles have found applications in a variety of fields such as engineering, agriculture, environment, food, and medicine. Microbubbles have been successfully used in aquacultures of oysters in Hiroshima, scallops in Hokkaido, and pearls in Mie Prefecture, Japan. This field has shown a strong potential for growth. This book comprehensively discusses microbubbles and nanobubbles and their application in aquaculture, environment, engineering, medicine, stock raising, agriculture, and marine industry. It presents their potential as a new technology that can be utilized globally.
Sonochemistry
Author: Suresh C. Ameta
Publisher: CRC Press
ISBN: 1351592998
Category : Science
Languages : en
Pages : 355
Book Description
Traditionally heat and light are thought as energy sources to drive a particular chemical reaction, but now ultrasound is a promising energy source for this purpose. The collapse of a bubble generates a wide range of high temperatures and pressures, and therefore, use of ultrasound has a considerable potential in chemical and allied sciences. Ultrasound-assisted reactions are green and economically viable alternatives to conventional techniques. This new volume presents a complete picture of ultrasound-assisted reactions and technologies that can be used in organic synthesis, polymer synthesis and degradation, nanomaterials, wastewater treatment, food ingredients and products, pharmaceutical applications, bioenergy applications, and more. This volume aims to shed light on the diversified applications of ultrasound and its significant role as a green chemical pathway. Sonochemistry deals with the effect of ultrasonic waves on chemical systems. It has green value because of non-hazardous acoustic radiation and is therefore duly recognized as a green chemistry by synthetic chemists as well as environmentalists. There is no direct interaction of ultrasound with molecular species, but the observed chemical and physical effects of ultrasound are due to the cavitational collapse, which produces drastic conditions of temperature and pressure locally. It induces the formation of various chemical species, which cannot be easily attained under conventional conditions. Sometimes, these species are responsible for driving towards an unusual reactivity in molecular entities. This book, Sonochemistry: An Emerging Green Technology, provides the complete development of sonochemistry, starting with an introduction and basic concepts of sonochemistry and proceeding on to different types of sonochemical reactions, instrumentation, use of ultrasound in driving particular chemical reactions, and its applications in various fields, such as polymer synthesis, decontamination of water and wastewater, preparation of nanomaterials, food technology, pharmaceutical sciences, etc. The book also briefly discusses some areas that utilize ultrasounds of different frequencies. These include food products and their processing; anaerobic digestion of waste; and medical applications such as ultrasonography, sonodynamic therapy, drug delivery, etc. Sonochemistry will be successfully used on an industrial scale in pharmaceutical drugs, polymers, nanomaterials, food technology, material science, biogas production, etc. in years to come and will be an established green chemical technology of the future.
Publisher: CRC Press
ISBN: 1351592998
Category : Science
Languages : en
Pages : 355
Book Description
Traditionally heat and light are thought as energy sources to drive a particular chemical reaction, but now ultrasound is a promising energy source for this purpose. The collapse of a bubble generates a wide range of high temperatures and pressures, and therefore, use of ultrasound has a considerable potential in chemical and allied sciences. Ultrasound-assisted reactions are green and economically viable alternatives to conventional techniques. This new volume presents a complete picture of ultrasound-assisted reactions and technologies that can be used in organic synthesis, polymer synthesis and degradation, nanomaterials, wastewater treatment, food ingredients and products, pharmaceutical applications, bioenergy applications, and more. This volume aims to shed light on the diversified applications of ultrasound and its significant role as a green chemical pathway. Sonochemistry deals with the effect of ultrasonic waves on chemical systems. It has green value because of non-hazardous acoustic radiation and is therefore duly recognized as a green chemistry by synthetic chemists as well as environmentalists. There is no direct interaction of ultrasound with molecular species, but the observed chemical and physical effects of ultrasound are due to the cavitational collapse, which produces drastic conditions of temperature and pressure locally. It induces the formation of various chemical species, which cannot be easily attained under conventional conditions. Sometimes, these species are responsible for driving towards an unusual reactivity in molecular entities. This book, Sonochemistry: An Emerging Green Technology, provides the complete development of sonochemistry, starting with an introduction and basic concepts of sonochemistry and proceeding on to different types of sonochemical reactions, instrumentation, use of ultrasound in driving particular chemical reactions, and its applications in various fields, such as polymer synthesis, decontamination of water and wastewater, preparation of nanomaterials, food technology, pharmaceutical sciences, etc. The book also briefly discusses some areas that utilize ultrasounds of different frequencies. These include food products and their processing; anaerobic digestion of waste; and medical applications such as ultrasonography, sonodynamic therapy, drug delivery, etc. Sonochemistry will be successfully used on an industrial scale in pharmaceutical drugs, polymers, nanomaterials, food technology, material science, biogas production, etc. in years to come and will be an established green chemical technology of the future.