Some Novel Types of Fractal Geometry

Some Novel Types of Fractal Geometry PDF Author: Stephen Semmes
Publisher: Oxford University Press
ISBN: 9780198508069
Category : Mathematics
Languages : en
Pages : 180

Get Book Here

Book Description
This book deals with fractal geometries that have features similar to ones of ordinary Euclidean spaces, while at the same time being quite different from Euclidean spaces.. A basic example of this feature considered is the presence of Sobolev or Poincaré inequalities, concerning the relationship between the average behavior of a function and the average behavior of its small-scale oscillations. Remarkable results in the last few years through Bourdon-Pajot and Laakso have shown that there is much more in the way of geometries like this than have been realized, only examples related to nilpotent Lie groups and Carnot metrics were known previously. On the other had, 'typical' fractals that might be seen in pictures do not have these same kinds of features. This text examines these topics in detail and will interest graduate students as well as researchers in mathematics and various aspects of geometry and analysis.

Some Novel Types of Fractal Geometry

Some Novel Types of Fractal Geometry PDF Author: Stephen Semmes
Publisher: Oxford University Press
ISBN: 9780198508069
Category : Mathematics
Languages : en
Pages : 180

Get Book Here

Book Description
This book deals with fractal geometries that have features similar to ones of ordinary Euclidean spaces, while at the same time being quite different from Euclidean spaces.. A basic example of this feature considered is the presence of Sobolev or Poincaré inequalities, concerning the relationship between the average behavior of a function and the average behavior of its small-scale oscillations. Remarkable results in the last few years through Bourdon-Pajot and Laakso have shown that there is much more in the way of geometries like this than have been realized, only examples related to nilpotent Lie groups and Carnot metrics were known previously. On the other had, 'typical' fractals that might be seen in pictures do not have these same kinds of features. This text examines these topics in detail and will interest graduate students as well as researchers in mathematics and various aspects of geometry and analysis.

Thermoelasticity with Finite Wave Speeds

Thermoelasticity with Finite Wave Speeds PDF Author: Józef Ignaczak
Publisher: Oxford University Press
ISBN: 0199541647
Category : Language Arts & Disciplines
Languages : en
Pages : 432

Get Book Here

Book Description
A unique monograph in a fast developing field of generalized thermoelasticity, an area of active research in continuum mechanics, focusing on thermoelasticity governed by hyperbolic equations, rather than on a wide range of continuum theories.

General Relativity and the Einstein Equations

General Relativity and the Einstein Equations PDF Author: Yvonne Choquet-Bruhat
Publisher: Oxford University Press
ISBN: 0199230722
Category : Mathematics
Languages : en
Pages : 812

Get Book Here

Book Description
General Relativity has passed all experimental and observational tests to model the motion of isolated bodies with strong gravitational fields, though the mathematical and numerical study of these motions is still in its infancy. It is believed that General Relativity models our cosmos, with a manifold of dimensions possibly greater than four and debatable topology opening a vast field of investigation for mathematicians and physicists alike. Remarkable conjectures have been proposed, many results have been obtained but many fundamental questions remain open. In this monograph, aimed at researchers in mathematics and physics, the author overviews the basic ideas in General Relativity, introduces the necessary mathematics and discusses some of the key open questions in the field.

Feynman's Operational Calculus and Beyond

Feynman's Operational Calculus and Beyond PDF Author: Gerald W. Johnson
Publisher: Oxford Mathematical Monographs
ISBN: 0198702493
Category : Biography & Autobiography
Languages : en
Pages : 385

Get Book Here

Book Description
This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An operator calculus having applications in quantum electrodynamics, as will be made abundantly clear in the introduction (Chapter 1) and elsewhere in the text, the theory developed in this book also goes well beyond them in a number of directions which were not anticipated in Feynman's work. Hence, the second part of the main title of this book. The basic properties of the operational calculus are developed and certain algebraic and analytic properties of the operational calculus are explored. Also, the operational calculus will be seen to possess some pleasant stability properties. Furthermore, an evolution equation and a generalized integral equation obeyed by the operational calculus are discussed and connections with certain analytic Feynman integrals are noted. This volume is essentially self-contained and we only assume that the reader has a reasonable, graduate level, background in analysis, measure theory and functional analysis or operator theory. Much of the necessary remaining background is supplied in the text itself.

Hyperbolic Dynamics and Brownian Motion

Hyperbolic Dynamics and Brownian Motion PDF Author: Jacques Franchi
Publisher: Oxford University Press
ISBN: 0191655481
Category : Science
Languages : en
Pages : 283

Get Book Here

Book Description
Hyperbolic Dynamics and Brownian Motion illustrates the interplay between distinct domains of mathematics. There is no assumption that the reader is a specialist in any of these domains: only basic knowledge of linear algebra, calculus and probability theory is required. The content can be summarized in three ways: Firstly, this book provides an introduction to hyperbolic geometry, based on the Lorentz group. The Lorentz group plays, in relativistic space-time, a role analogue to the rotations in Euclidean space. The hyperbolic geometry is the geometry of the unit pseudo-sphere. The boundary of the hyperbolic space is defined as the set of light rays. Special attention is given to the geodesic and horocyclic flows. Hyperbolic geometry is presented via special relativity to benefit from the physical intuition. Secondly, this book introduces basic notions of stochastic analysis: the Wiener process, Itô's stochastic integral, and calculus. This introduction allows study in linear stochastic differential equations on groups of matrices. In this way the spherical and hyperbolic Brownian motions, diffusions on the stable leaves, and the relativistic diffusion are constructed. Thirdly, quotients of the hyperbolic space under a discrete group of isometries are introduced. In this framework some elements of hyperbolic dynamics are presented, as the ergodicity of the geodesic and horocyclic flows. This book culminates with an analysis of the chaotic behaviour of the geodesic flow, performed using stochastic analysis methods. This main result is known as Sinai's central limit theorem.

On the Topology and Future Stability of the Universe

On the Topology and Future Stability of the Universe PDF Author: Hans Ringström
Publisher: OUP Oxford
ISBN: 0199680299
Category : Science
Languages : en
Pages : 733

Get Book Here

Book Description
A general introduction to the initial value problem for Einstein's equations coupled to collisionless matter. The book contains a proof of future stability of models of the universe consistent with the current observational data and a discussion of the restrictions on the possible shapes of the universe imposed by observations.

Spectral Theory and Differential Operators

Spectral Theory and Differential Operators PDF Author: David Edmunds
Publisher: Oxford University Press
ISBN: 0192540106
Category : Mathematics
Languages : en
Pages : 610

Get Book Here

Book Description
This book is an updated version of the classic 1987 monograph "Spectral Theory and Differential Operators".The original book was a cutting edge account of the theory of bounded and closed linear operators in Banach and Hilbert spaces relevant to spectral problems involving differential equations. It is accessible to a graduate student as well as meeting the needs of seasoned researchers in mathematics and mathematical physics. This revised edition corrects various errors, and adds extensive notes to the end of each chapter which describe the considerable progress that has been made on the topic in the last 30 years.

Nonlinear Potential Theory on Metric Spaces

Nonlinear Potential Theory on Metric Spaces PDF Author: Anders Björn
Publisher: European Mathematical Society
ISBN: 9783037190999
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
The $p$-Laplace equation is the main prototype for nonlinear elliptic problems and forms a basis for various applications, such as injection moulding of plastics, nonlinear elasticity theory, and image processing. Its solutions, called p-harmonic functions, have been studied in various contexts since the 1960s, first on Euclidean spaces and later on Riemannian manifolds, graphs, and Heisenberg groups. Nonlinear potential theory of p-harmonic functions on metric spaces has been developing since the 1990s and generalizes and unites these earlier theories. This monograph gives a unified treatment of the subject and covers most of the available results in the field, so far scattered over a large number of research papers. The aim is to serve both as an introduction to the area for interested readers and as a reference text for active researchers. The presentation is rather self contained, but it is assumed that readers know measure theory and functional analysis. The first half of the book deals with Sobolev type spaces, so-called Newtonian spaces, based on upper gradients on general metric spaces. In the second half, these spaces are used to study p-harmonic functions on metric spaces, and a nonlinear potential theory is developed under some additional, but natural, assumptions on the underlying metric space. Each chapter contains historical notes with relevant references, and an extensive index is provided at the end of the book.

The Universality of the Radon Transform

The Universality of the Radon Transform PDF Author: Leon Ehrenpreis
Publisher: OUP Oxford
ISBN: 0191523267
Category : Mathematics
Languages : en
Pages : 740

Get Book Here

Book Description
Written by a leading scholar in mathematics, this monograph discusses the Radon transform, a field that has wide ranging applications to X-ray technology, partial differential equations, nuclear magnetic resonance scanning, and tomography. In this book, Ehrenpreis focuses on recent research and highlights the strong relationship between high-level pure mathematics and applications of the Radon transform to areas such as medical imaging. The first part of the book discusses parametric and nonparametric Radon transforms, Harmonic Functions and Radon transform on Algebraic Varieties, nonlinear Radon and Fourier transforms, Radon transform on groups, and Radon transform as the interrelation of geometry and analysis. The later parts discuss the extension of solutions of differential equations, Periods of Eisenstein and Poincaré, and some problems of integral geometry arising in tomography. Examples and proofs are provided throughout the book to aid the reader's understanding. This is the latest title in the Oxford Mathematical Monographs, which includes texts and monographs covering many topics of current research interest in pure and applied mathematics. Other titles include: Carbone and Semmes: A graphic apology for symmetry and implicitness; Higson and Roe: Analytic K-Homology; Iwaniec and Martin: Geometric Function Theory and Nonlinear Analysis; Lyons and Qian: System Control and Rough Paths. Also new in paperback Johnson and Lapidus: The Feynman Integral and Feynman's Operational Calculus; Donaldson and Kronheimer: The geometry of four-manifolds.

The Porous Medium Equation

The Porous Medium Equation PDF Author: Juan Luis Vazquez
Publisher: Oxford University Press
ISBN: 0198569033
Category : Mathematics
Languages : en
Pages : 647

Get Book Here

Book Description
The Heat Equation is one of the three classical linear partial differential equations of second order that form the basis of any elementary introduction to the area of PDEs, and only recently has it come to be fairly well understood. In this monograph, aimed at research students and academics in mathematics and engineering, as well as engineering specialists, Professor Vazquez provides a systematic and comprehensive presentation of the mathematical theory of the nonlinear heatequation usually called the Porous Medium Equation (PME). This equation appears in a number of physical applications, such as to describe processes involving fluid flow, heat transfer or diffusion. Other applications have been proposed in mathematical biology, lubrication, boundary layer theory, andother fields. Each chapter contains a detailed introduction and is supplied with a section of notes, providing comments, historical notes or recommended reading, and exercises for the reader.