Author: Masanobu Taniguchi
Publisher: Springer Science & Business Media
ISBN: 146123154X
Category : Mathematics
Languages : en
Pages : 169
Book Description
The initial basis of this book was a series of my research papers, that I listed in References. I have many people to thank for the book's existence. Regarding higher order asymptotic efficiency I thank Professors Kei Takeuchi and M. Akahira for their many comments. I used their concept of efficiency for time series analysis. During the summer of 1983, I had an opportunity to visit The Australian National University, and could elucidate the third-order asymptotics of some estimators. I express my sincere thanks to Professor E.J. Hannan for his warmest encouragement and kindness. Multivariate time series analysis seems an important topic. In 1986 I visited Center for Mul tivariate Analysis, University of Pittsburgh. I received a lot of impact from multivariate analysis, and applied many multivariate methods to the higher order asymptotic theory of vector time series. I am very grateful to the late Professor P.R. Krishnaiah for his cooperation and kindness. In Japan my research was mainly performed in Hiroshima University. There is a research group of statisticians who are interested in the asymptotic expansions in statistics. Throughout this book I often used the asymptotic expansion techniques. I thank all the members of this group, especially Professors Y. Fujikoshi and K. Maekawa foItheir helpful discussion. When I was a student of Osaka University I learned multivariate analysis and time series analysis from Professors Masashi Okamoto and T. Nagai, respectively. It is a pleasure to thank them for giving me much of research background.
Higher Order Asymptotic Theory for Time Series Analysis
Author: Masanobu Taniguchi
Publisher: Springer Science & Business Media
ISBN: 146123154X
Category : Mathematics
Languages : en
Pages : 169
Book Description
The initial basis of this book was a series of my research papers, that I listed in References. I have many people to thank for the book's existence. Regarding higher order asymptotic efficiency I thank Professors Kei Takeuchi and M. Akahira for their many comments. I used their concept of efficiency for time series analysis. During the summer of 1983, I had an opportunity to visit The Australian National University, and could elucidate the third-order asymptotics of some estimators. I express my sincere thanks to Professor E.J. Hannan for his warmest encouragement and kindness. Multivariate time series analysis seems an important topic. In 1986 I visited Center for Mul tivariate Analysis, University of Pittsburgh. I received a lot of impact from multivariate analysis, and applied many multivariate methods to the higher order asymptotic theory of vector time series. I am very grateful to the late Professor P.R. Krishnaiah for his cooperation and kindness. In Japan my research was mainly performed in Hiroshima University. There is a research group of statisticians who are interested in the asymptotic expansions in statistics. Throughout this book I often used the asymptotic expansion techniques. I thank all the members of this group, especially Professors Y. Fujikoshi and K. Maekawa foItheir helpful discussion. When I was a student of Osaka University I learned multivariate analysis and time series analysis from Professors Masashi Okamoto and T. Nagai, respectively. It is a pleasure to thank them for giving me much of research background.
Publisher: Springer Science & Business Media
ISBN: 146123154X
Category : Mathematics
Languages : en
Pages : 169
Book Description
The initial basis of this book was a series of my research papers, that I listed in References. I have many people to thank for the book's existence. Regarding higher order asymptotic efficiency I thank Professors Kei Takeuchi and M. Akahira for their many comments. I used their concept of efficiency for time series analysis. During the summer of 1983, I had an opportunity to visit The Australian National University, and could elucidate the third-order asymptotics of some estimators. I express my sincere thanks to Professor E.J. Hannan for his warmest encouragement and kindness. Multivariate time series analysis seems an important topic. In 1986 I visited Center for Mul tivariate Analysis, University of Pittsburgh. I received a lot of impact from multivariate analysis, and applied many multivariate methods to the higher order asymptotic theory of vector time series. I am very grateful to the late Professor P.R. Krishnaiah for his cooperation and kindness. In Japan my research was mainly performed in Hiroshima University. There is a research group of statisticians who are interested in the asymptotic expansions in statistics. Throughout this book I often used the asymptotic expansion techniques. I thank all the members of this group, especially Professors Y. Fujikoshi and K. Maekawa foItheir helpful discussion. When I was a student of Osaka University I learned multivariate analysis and time series analysis from Professors Masashi Okamoto and T. Nagai, respectively. It is a pleasure to thank them for giving me much of research background.
Current Perspective on Irrigation and Drainage
Author: Surendra Nath Kulshreshtha
Publisher: BoD – Books on Demand
ISBN: 9535129511
Category : Technology & Engineering
Languages : en
Pages : 114
Book Description
This book was designed to be a comprehensive review of selected topics related to irrigation and drainage. Readers will find themes such as salinity control, decision support systems, subsurface drainage, irrigation scheduling in nurseries, irrigation with municipal wastewater, and sustainable drainage systems. These topics and pursuant discussions are expected to be very fruitful in the continuing debate on global food security.
Publisher: BoD – Books on Demand
ISBN: 9535129511
Category : Technology & Engineering
Languages : en
Pages : 114
Book Description
This book was designed to be a comprehensive review of selected topics related to irrigation and drainage. Readers will find themes such as salinity control, decision support systems, subsurface drainage, irrigation scheduling in nurseries, irrigation with municipal wastewater, and sustainable drainage systems. These topics and pursuant discussions are expected to be very fruitful in the continuing debate on global food security.
Statistical Theory and Method Abstracts
Author:
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 724
Book Description
Publisher:
ISBN:
Category : Statistics
Languages : en
Pages : 724
Book Description
The Structural Econometric Time Series Analysis Approach
Author: Arnold Zellner
Publisher: Cambridge University Press
ISBN: 9781139453431
Category : Business & Economics
Languages : en
Pages : 736
Book Description
Bringing together a collection of previously published work, this book provides a discussion of major considerations relating to the construction of econometric models that work well to explain economic phenomena, predict future outcomes and be useful for policy-making. Analytical relations between dynamic econometric structural models and empirical time series MVARMA, VAR, transfer function, and univariate ARIMA models are established with important application for model-checking and model construction. The theory and applications of these procedures to a variety of econometric modeling and forecasting problems as well as Bayesian and non-Bayesian testing, shrinkage estimation and forecasting procedures are also presented and applied. Finally, attention is focused on the effects of disaggregation on forecasting precision and the Marshallian Macroeconomic Model that features demand, supply and entry equations for major sectors of economies is analysed and described. This volume will prove invaluable to professionals, academics and students alike.
Publisher: Cambridge University Press
ISBN: 9781139453431
Category : Business & Economics
Languages : en
Pages : 736
Book Description
Bringing together a collection of previously published work, this book provides a discussion of major considerations relating to the construction of econometric models that work well to explain economic phenomena, predict future outcomes and be useful for policy-making. Analytical relations between dynamic econometric structural models and empirical time series MVARMA, VAR, transfer function, and univariate ARIMA models are established with important application for model-checking and model construction. The theory and applications of these procedures to a variety of econometric modeling and forecasting problems as well as Bayesian and non-Bayesian testing, shrinkage estimation and forecasting procedures are also presented and applied. Finally, attention is focused on the effects of disaggregation on forecasting precision and the Marshallian Macroeconomic Model that features demand, supply and entry equations for major sectors of economies is analysed and described. This volume will prove invaluable to professionals, academics and students alike.
Asymptotic Properties of Some Estimators in Moving Average Models
Author: Stanford University. Department of Statistics
Publisher:
ISBN:
Category : Time-series analysis
Languages : en
Pages : 318
Book Description
The author considers estimation procedures for the moving average model of order q. Walker's method uses k sample autocovariances (k> or = q). Assume that k depends on T in such a way that k nears infinity as T nears infinity. The estimates are consistent, asymptotically normal and asymptotically efficient if k = k (T) dominates log T and is dominated by (T sub 1/2). The approach in proving these theorems involves obtaining an explicit form for the components of the inverse of a symmetric matrix with equal elements along its five central diagonals, and zeroes elsewhere. The asymptotic normality follows from a central limit theorem for normalized sums of random variables that are dependent of order k, where k tends to infinity with T. An alternative form of the estimator facilitates the calculations and the analysis of the role of k, without changing the asymptotic properties.
Publisher:
ISBN:
Category : Time-series analysis
Languages : en
Pages : 318
Book Description
The author considers estimation procedures for the moving average model of order q. Walker's method uses k sample autocovariances (k> or = q). Assume that k depends on T in such a way that k nears infinity as T nears infinity. The estimates are consistent, asymptotically normal and asymptotically efficient if k = k (T) dominates log T and is dominated by (T sub 1/2). The approach in proving these theorems involves obtaining an explicit form for the components of the inverse of a symmetric matrix with equal elements along its five central diagonals, and zeroes elsewhere. The asymptotic normality follows from a central limit theorem for normalized sums of random variables that are dependent of order k, where k tends to infinity with T. An alternative form of the estimator facilitates the calculations and the analysis of the role of k, without changing the asymptotic properties.
Research Papers in Statistical Inference for Time Series and Related Models
Author: Yan Liu
Publisher: Springer Nature
ISBN: 9819908035
Category : Mathematics
Languages : en
Pages : 591
Book Description
This book compiles theoretical developments on statistical inference for time series and related models in honor of Masanobu Taniguchi's 70th birthday. It covers models such as long-range dependence models, nonlinear conditionally heteroscedastic time series, locally stationary processes, integer-valued time series, Lévy Processes, complex-valued time series, categorical time series, exclusive topic models, and copula models. Many cutting-edge methods such as empirical likelihood methods, quantile regression, portmanteau tests, rank-based inference, change-point detection, testing for the goodness-of-fit, higher-order asymptotic expansion, minimum contrast estimation, optimal transportation, and topological methods are proposed, considered, or applied to complex data based on the statistical inference for stochastic processes. The performances of these methods are illustrated by a variety of data analyses. This collection of original papers provides the reader with comprehensive and state-of-the-art theoretical works on time series and related models. It contains deep and profound treatments of the asymptotic theory of statistical inference. In addition, many specialized methodologies based on the asymptotic theory are presented in a simple way for a wide variety of statistical models. This Festschrift finds its core audiences in statistics, signal processing, and econometrics.
Publisher: Springer Nature
ISBN: 9819908035
Category : Mathematics
Languages : en
Pages : 591
Book Description
This book compiles theoretical developments on statistical inference for time series and related models in honor of Masanobu Taniguchi's 70th birthday. It covers models such as long-range dependence models, nonlinear conditionally heteroscedastic time series, locally stationary processes, integer-valued time series, Lévy Processes, complex-valued time series, categorical time series, exclusive topic models, and copula models. Many cutting-edge methods such as empirical likelihood methods, quantile regression, portmanteau tests, rank-based inference, change-point detection, testing for the goodness-of-fit, higher-order asymptotic expansion, minimum contrast estimation, optimal transportation, and topological methods are proposed, considered, or applied to complex data based on the statistical inference for stochastic processes. The performances of these methods are illustrated by a variety of data analyses. This collection of original papers provides the reader with comprehensive and state-of-the-art theoretical works on time series and related models. It contains deep and profound treatments of the asymptotic theory of statistical inference. In addition, many specialized methodologies based on the asymptotic theory are presented in a simple way for a wide variety of statistical models. This Festschrift finds its core audiences in statistics, signal processing, and econometrics.
Adaptive Systems in Control and Signal Processing 1986
Author: K.J. Aström
Publisher: Elsevier
ISBN: 1483298086
Category : Technology & Engineering
Languages : en
Pages : 463
Book Description
This second IFAC workshop discusses the variety and applications of adaptive systems in control and signal processing. The various approaches to adaptive control systems are covered and their stability and adaptability analyzed. The volume also includes papers taken from two poster sessions to give a concise and comprehensive overview/treatment of this increasingly important field.
Publisher: Elsevier
ISBN: 1483298086
Category : Technology & Engineering
Languages : en
Pages : 463
Book Description
This second IFAC workshop discusses the variety and applications of adaptive systems in control and signal processing. The various approaches to adaptive control systems are covered and their stability and adaptability analyzed. The volume also includes papers taken from two poster sessions to give a concise and comprehensive overview/treatment of this increasingly important field.
Multivariate Statistics and Probability
Author: C. R. Rao
Publisher: Academic Press
ISBN: 1483263835
Category : Mathematics
Languages : en
Pages : 582
Book Description
Multivariate Statistics and Probability: Essays in Memory of Paruchuri R. Krishnaiah is a collection of essays on multivariate statistics and probability in memory of Paruchuri R. Krishnaiah (1932-1987), who made significant contributions to the fields of multivariate statistical analysis and stochastic theory. The papers cover the main areas of multivariate statistical theory and its applications, as well as aspects of probability and stochastic analysis. Topics range from finite sampling and asymptotic results, including aspects of decision theory, Bayesian analysis, classical estimation, regression, and time-series problems. Comprised of 35 chapters, this book begins with a discussion on the joint asymptotic distribution of marginal quantiles and quantile functions in samples from a multivariate population. The reader is then introduced to kernel estimators of density function of directional data; moment conditions for valid formal edgeworth expansions; and ergodicity and central limit theorems for a class of Markov processes. Subsequent chapters focus on minimal complete classes of invariant tests for equality of normal covariance matrices and sphericity; normed likelihood as saddlepoint approximation; generalized Gaussian random fields; and smoothness properties of the conditional expectation in finitely additive white noise filtering. This monograph should be of considerable interest to researchers as well as to graduate students working in theoretical and applied statistics, multivariate analysis, and random processes.
Publisher: Academic Press
ISBN: 1483263835
Category : Mathematics
Languages : en
Pages : 582
Book Description
Multivariate Statistics and Probability: Essays in Memory of Paruchuri R. Krishnaiah is a collection of essays on multivariate statistics and probability in memory of Paruchuri R. Krishnaiah (1932-1987), who made significant contributions to the fields of multivariate statistical analysis and stochastic theory. The papers cover the main areas of multivariate statistical theory and its applications, as well as aspects of probability and stochastic analysis. Topics range from finite sampling and asymptotic results, including aspects of decision theory, Bayesian analysis, classical estimation, regression, and time-series problems. Comprised of 35 chapters, this book begins with a discussion on the joint asymptotic distribution of marginal quantiles and quantile functions in samples from a multivariate population. The reader is then introduced to kernel estimators of density function of directional data; moment conditions for valid formal edgeworth expansions; and ergodicity and central limit theorems for a class of Markov processes. Subsequent chapters focus on minimal complete classes of invariant tests for equality of normal covariance matrices and sphericity; normed likelihood as saddlepoint approximation; generalized Gaussian random fields; and smoothness properties of the conditional expectation in finitely additive white noise filtering. This monograph should be of considerable interest to researchers as well as to graduate students working in theoretical and applied statistics, multivariate analysis, and random processes.
Stochastic Processes: Modeling and Simulation
Author: D N Shanbhag
Publisher: Gulf Professional Publishing
ISBN: 9780444500137
Category : Computers
Languages : en
Pages : 1028
Book Description
This sequel to volume 19 of Handbook on Statistics on Stochastic Processes: Modelling and Simulation is concerned mainly with the theme of reviewing and, in some cases, unifying with new ideas the different lines of research and developments in stochastic processes of applied flavour. This volume consists of 23 chapters addressing various topics in stochastic processes. These include, among others, those on manufacturing systems, random graphs, reliability, epidemic modelling, self-similar processes, empirical processes, time series models, extreme value therapy, applications of Markov chains, modelling with Monte Carlo techniques, and stochastic processes in subjects such as engineering, telecommunications, biology, astronomy and chemistry. particular with modelling, simulation techniques and numerical methods concerned with stochastic processes. The scope of the project involving this volume as well as volume 19 is already clarified in the preface of volume 19. The present volume completes the aim of the project and should serve as an aid to students, teachers, researchers and practitioners interested in applied stochastic processes.
Publisher: Gulf Professional Publishing
ISBN: 9780444500137
Category : Computers
Languages : en
Pages : 1028
Book Description
This sequel to volume 19 of Handbook on Statistics on Stochastic Processes: Modelling and Simulation is concerned mainly with the theme of reviewing and, in some cases, unifying with new ideas the different lines of research and developments in stochastic processes of applied flavour. This volume consists of 23 chapters addressing various topics in stochastic processes. These include, among others, those on manufacturing systems, random graphs, reliability, epidemic modelling, self-similar processes, empirical processes, time series models, extreme value therapy, applications of Markov chains, modelling with Monte Carlo techniques, and stochastic processes in subjects such as engineering, telecommunications, biology, astronomy and chemistry. particular with modelling, simulation techniques and numerical methods concerned with stochastic processes. The scope of the project involving this volume as well as volume 19 is already clarified in the preface of volume 19. The present volume completes the aim of the project and should serve as an aid to students, teachers, researchers and practitioners interested in applied stochastic processes.
Sydney R. Parker
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 472
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 472
Book Description