Author: Bernd Sturmfels
Publisher: American Mathematical Soc.
ISBN: 0821832514
Category : Mathematics
Languages : en
Pages : 162
Book Description
Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.
Solving Systems of Polynomial Equations
Author: Bernd Sturmfels
Publisher: American Mathematical Soc.
ISBN: 0821832514
Category : Mathematics
Languages : en
Pages : 162
Book Description
Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.
Publisher: American Mathematical Soc.
ISBN: 0821832514
Category : Mathematics
Languages : en
Pages : 162
Book Description
Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.
Numerically Solving Polynomial Systems with Bertini
Author: Daniel J. Bates
Publisher: SIAM
ISBN: 1611972698
Category : Science
Languages : en
Pages : 372
Book Description
This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.
Publisher: SIAM
ISBN: 1611972698
Category : Science
Languages : en
Pages : 372
Book Description
This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.
Solving Polynomial Equations
Author: Alicia Dickenstein
Publisher: Springer Science & Business Media
ISBN: 3540243267
Category : Computers
Languages : en
Pages : 433
Book Description
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.
Publisher: Springer Science & Business Media
ISBN: 3540243267
Category : Computers
Languages : en
Pages : 433
Book Description
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.
Solving Polynomial Equation Systems I
Author: Teo Mora
Publisher: Cambridge University Press
ISBN: 9780521811545
Category : Mathematics
Languages : en
Pages : 452
Book Description
Computational algebra; computational number theory; commutative algebra; handbook; reference; algorithmic; modern.
Publisher: Cambridge University Press
ISBN: 9780521811545
Category : Mathematics
Languages : en
Pages : 452
Book Description
Computational algebra; computational number theory; commutative algebra; handbook; reference; algorithmic; modern.
Intermediate Algebra 2e
Author: Lynn Marecek
Publisher:
ISBN: 9781951693848
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781951693848
Category :
Languages : en
Pages :
Book Description
Solving Transcendental Equations
Author: John P. Boyd
Publisher: SIAM
ISBN: 161197352X
Category : Mathematics
Languages : en
Pages : 446
Book Description
Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute--not always needed, but indispensible when it is. The author's goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations.
Publisher: SIAM
ISBN: 161197352X
Category : Mathematics
Languages : en
Pages : 446
Book Description
Transcendental equations arise in every branch of science and engineering. While most of these equations are easy to solve, some are not, and that is where this book serves as the mathematical equivalent of a skydiver's reserve parachute--not always needed, but indispensible when it is. The author's goal is to teach the art of finding the root of a single algebraic equation or a pair of such equations.
Solving Polynomial Equation Systems III: Volume 3, Algebraic Solving
Author: Teo Mora
Publisher: Cambridge University Press
ISBN: 1316297969
Category : Mathematics
Languages : en
Pages : 332
Book Description
This third volume of four finishes the program begun in Volume 1 by describing all the most important techniques, mainly based on Gröbner bases, which allow one to manipulate the roots of the equation rather than just compute them. The book begins with the 'standard' solutions (Gianni–Kalkbrener Theorem, Stetter Algorithm, Cardinal–Mourrain result) and then moves on to more innovative methods (Lazard triangular sets, Rouillier's Rational Univariate Representation, the TERA Kronecker package). The author also looks at classical results, such as Macaulay's Matrix, and provides a historical survey of elimination, from Bézout to Cayley. This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers.
Publisher: Cambridge University Press
ISBN: 1316297969
Category : Mathematics
Languages : en
Pages : 332
Book Description
This third volume of four finishes the program begun in Volume 1 by describing all the most important techniques, mainly based on Gröbner bases, which allow one to manipulate the roots of the equation rather than just compute them. The book begins with the 'standard' solutions (Gianni–Kalkbrener Theorem, Stetter Algorithm, Cardinal–Mourrain result) and then moves on to more innovative methods (Lazard triangular sets, Rouillier's Rational Univariate Representation, the TERA Kronecker package). The author also looks at classical results, such as Macaulay's Matrix, and provides a historical survey of elimination, from Bézout to Cayley. This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers.
Numerical Polynomial Algebra
Author: Hans J. Stetter
Publisher: SIAM
ISBN: 9780898717976
Category : Mathematics
Languages : en
Pages : 487
Book Description
In many important areas of scientific computing, polynomials in one or more variables are employed in the mathematical modeling of real-life phenomena; yet most of classical computer algebra assumes exact rational data. This book is the first comprehensive treatment of the emerging area of numerical polynomial algebra, an area that falls between classical numerical analysis and classical computer algebra but, surprisingly, has received little attention so far. The author introduces a conceptual framework that permits the meaningful solution of various algebraic problems with multivariate polynomial equations whose coefficients have some indeterminacy; for this purpose, he combines approaches of both numerical linear algebra and commutative algebra. For the application scientist, Numerical Polynomial Algebra provides both a survey of polynomial problems in scientific computing that may be solved numerically and a guide to their numerical treatment. In addition, the book provides both introductory sections and novel extensions of numerical analysis and computer algebra, making it accessible to the reader with expertise in either one of these areas.
Publisher: SIAM
ISBN: 9780898717976
Category : Mathematics
Languages : en
Pages : 487
Book Description
In many important areas of scientific computing, polynomials in one or more variables are employed in the mathematical modeling of real-life phenomena; yet most of classical computer algebra assumes exact rational data. This book is the first comprehensive treatment of the emerging area of numerical polynomial algebra, an area that falls between classical numerical analysis and classical computer algebra but, surprisingly, has received little attention so far. The author introduces a conceptual framework that permits the meaningful solution of various algebraic problems with multivariate polynomial equations whose coefficients have some indeterminacy; for this purpose, he combines approaches of both numerical linear algebra and commutative algebra. For the application scientist, Numerical Polynomial Algebra provides both a survey of polynomial problems in scientific computing that may be solved numerically and a guide to their numerical treatment. In addition, the book provides both introductory sections and novel extensions of numerical analysis and computer algebra, making it accessible to the reader with expertise in either one of these areas.
The Numerical Solution of Systems of Polynomials Arising in Engineering and Science
Author: Andrew John Sommese
Publisher: World Scientific
ISBN: 9812561846
Category : Mathematics
Languages : en
Pages : 426
Book Description
Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.
Publisher: World Scientific
ISBN: 9812561846
Category : Mathematics
Languages : en
Pages : 426
Book Description
Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.
General Theory of Algebraic Equations
Author: Etienne Bézout
Publisher: Princeton University Press
ISBN: 1400826969
Category : Mathematics
Languages : en
Pages : 363
Book Description
This book provides the first English translation of Bezout's masterpiece, the General Theory of Algebraic Equations. It follows, by almost two hundred years, the English translation of his famous mathematics textbooks. Here, Bézout presents his approach to solving systems of polynomial equations in several variables and in great detail. He introduces the revolutionary notion of the "polynomial multiplier," which greatly simplifies the problem of variable elimination by reducing it to a system of linear equations. The major result presented in this work, now known as "Bézout's theorem," is stated as follows: "The degree of the final equation resulting from an arbitrary number of complete equations containing the same number of unknowns and with arbitrary degrees is equal to the product of the exponents of the degrees of these equations." The book offers large numbers of results and insights about conditions for polynomials to share a common factor, or to share a common root. It also provides a state-of-the-art analysis of the theories of integration and differentiation of functions in the late eighteenth century, as well as one of the first uses of determinants to solve systems of linear equations. Polynomial multiplier methods have become, today, one of the most promising approaches to solving complex systems of polynomial equations or inequalities, and this translation offers a valuable historic perspective on this active research field.
Publisher: Princeton University Press
ISBN: 1400826969
Category : Mathematics
Languages : en
Pages : 363
Book Description
This book provides the first English translation of Bezout's masterpiece, the General Theory of Algebraic Equations. It follows, by almost two hundred years, the English translation of his famous mathematics textbooks. Here, Bézout presents his approach to solving systems of polynomial equations in several variables and in great detail. He introduces the revolutionary notion of the "polynomial multiplier," which greatly simplifies the problem of variable elimination by reducing it to a system of linear equations. The major result presented in this work, now known as "Bézout's theorem," is stated as follows: "The degree of the final equation resulting from an arbitrary number of complete equations containing the same number of unknowns and with arbitrary degrees is equal to the product of the exponents of the degrees of these equations." The book offers large numbers of results and insights about conditions for polynomials to share a common factor, or to share a common root. It also provides a state-of-the-art analysis of the theories of integration and differentiation of functions in the late eighteenth century, as well as one of the first uses of determinants to solve systems of linear equations. Polynomial multiplier methods have become, today, one of the most promising approaches to solving complex systems of polynomial equations or inequalities, and this translation offers a valuable historic perspective on this active research field.