Solution of Differential Equation Models by Polynomial Approximation

Solution of Differential Equation Models by Polynomial Approximation PDF Author: John Villadsen
Publisher: Prentice Hall
ISBN: 9780138222055
Category : Approximation theory
Languages : en
Pages : 446

Get Book Here

Book Description

Solution of Differential Equation Models by Polynomial Approximation

Solution of Differential Equation Models by Polynomial Approximation PDF Author: John Villadsen
Publisher: Prentice Hall
ISBN: 9780138222055
Category : Approximation theory
Languages : en
Pages : 446

Get Book Here

Book Description


Computational Differential Equations

Computational Differential Equations PDF Author: Kenneth Eriksson
Publisher: Cambridge University Press
ISBN: 9780521567381
Category : Mathematics
Languages : en
Pages : 558

Get Book Here

Book Description
This textbook on computational mathematics is based on a fusion of mathematical analysis, numerical computation and applications.

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations PDF Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327

Get Book Here

Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Approximation of Continuously Differentiable Functions

Approximation of Continuously Differentiable Functions PDF Author: J.G. Llavona
Publisher: Elsevier
ISBN: 0080872417
Category : Mathematics
Languages : en
Pages : 257

Get Book Here

Book Description
This self-contained book brings together the important results of a rapidly growing area.As a starting point it presents the classic results of the theory. The book covers such results as: the extension of Wells' theorem and Aron's theorem for the fine topology of order m; extension of Bernstein's and Weierstrass' theorems for infinite dimensional Banach spaces; extension of Nachbin's and Whitney's theorem for infinite dimensional Banach spaces; automatic continuity of homomorphisms in algebras of continuously differentiable functions, etc.

Partial Differential Equations

Partial Differential Equations PDF Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467

Get Book Here

Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Handbook of Differential Equations

Handbook of Differential Equations PDF Author: Daniel Zwillinger
Publisher: Academic Press
ISBN: 1483263967
Category : Mathematics
Languages : en
Pages : 808

Get Book Here

Book Description
Handbook of Differential Equations, Second Edition is a handy reference to many popular techniques for solving and approximating differential equations, including numerical methods and exact and approximate analytical methods. Topics covered range from transformations and constant coefficient linear equations to Picard iteration, along with conformal mappings and inverse scattering. Comprised of 192 chapters, this book begins with an introduction to transformations as well as general ideas about differential equations and how they are solved, together with the techniques needed to determine if a partial differential equation is well-posed or what the "natural" boundary conditions are. Subsequent sections focus on exact and approximate analytical solution techniques for differential equations, along with numerical methods for ordinary and partial differential equations. This monograph is intended for students taking courses in differential equations at either the undergraduate or graduate level, and should also be useful for practicing engineers or scientists who solve differential equations on an occasional basis.

Scaling of Differential Equations

Scaling of Differential Equations PDF Author: Hans Petter Langtangen
Publisher: Springer
ISBN: 3319327267
Category : Mathematics
Languages : en
Pages : 149

Get Book Here

Book Description
The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and example-driven. The first part on ODEs fits even a lower undergraduate level, while the most advanced multiphysics fluid mechanics examples target the graduate level. The scientific literature is full of scaled models, but in most of the cases, the scales are just stated without thorough mathematical reasoning. This book explains how the scales are found mathematically. This book will be a valuable read for anyone doing numerical simulations based on ordinary or partial differential equations.

Numerical Integration of Differential Equations and Large Linear Systems

Numerical Integration of Differential Equations and Large Linear Systems PDF Author: J. Hinze
Publisher: Springer
ISBN: 3540393749
Category : Mathematics
Languages : en
Pages : 423

Get Book Here

Book Description


Numerical Methods and Modeling for Chemical Engineers

Numerical Methods and Modeling for Chemical Engineers PDF Author: Mark E. Davis
Publisher: Courier Corporation
ISBN: 0486493830
Category : Technology & Engineering
Languages : en
Pages : 276

Get Book Here

Book Description
"Geared toward advanced undergraduates or graduate students of chemical engineering studying applied mathematics, this text introduces the quantitative treatment of differential equations arising from modeling physical phenomena in chemical engineering. Coverage includes topics such as ODE-IVPs, placing emphasis on numerical methods and modeling implemented in commercial mathematical software available in 1985"--

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations PDF Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.