Author: Redouane Borsali
Publisher: Springer Science & Business Media
ISBN: 140204464X
Category : Science
Languages : en
Pages : 1490
Book Description
This 2-volume set includes extensive discussions of scattering techniques (light, neutron and X-ray) and related fluctuation and grating techniques that are at the forefront of this field. Most of the scattering techniques are Fourier space techniques. Recent advances have seen the development of powerful direct imaging methods such as atomic force microscopy and scanning probe microscopy. In addition, techniques that can be used to manipulate soft matter on the nanometer scale are also in rapid development. These include the scanning probe microscopy technique mentioned above as well as optical and magnetic tweezers.
Soft-Matter Characterization
Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules
Author: Dmitriĭ Ivanovich Svergun
Publisher:
ISBN: 0199639531
Category : Science
Languages : en
Pages : 369
Book Description
This book describes all aspects of the technique of small-angle scattering of X-rays and neutrons, including instrumentation, sample requirements, data interpretation and modelling methods, in a comprehensive way and gives examples of applications in various fields of biophysics and biochemistry.
Publisher:
ISBN: 0199639531
Category : Science
Languages : en
Pages : 369
Book Description
This book describes all aspects of the technique of small-angle scattering of X-rays and neutrons, including instrumentation, sample requirements, data interpretation and modelling methods, in a comprehensive way and gives examples of applications in various fields of biophysics and biochemistry.
Structure Analysis by Small-Angle X-Ray and Neutron Scattering
Author: L.A. Feigin
Publisher: Springer Science & Business Media
ISBN: 1475766246
Category : Science
Languages : en
Pages : 339
Book Description
Small-angle scattering of X rays and neutrons is a widely used diffraction method for studying the structure of matter. This method of elastic scattering is used in various branches of science and technology, includ ing condensed matter physics, molecular biology and biophysics, polymer science, and metallurgy. Many small-angle scattering studies are of value for pure science and practical applications. It is well known that the most general and informative method for investigating the spatial structure of matter is based on wave-diffraction phenomena. In diffraction experiments a primary beam of radiation influences a studied object, and the scattering pattern is analyzed. In principle, this analysis allows one to obtain information on the structure of a substance with a spatial resolution determined by the wavelength of the radiation. Diffraction methods are used for studying matter on all scales, from elementary particles to macro-objects. The use of X rays, neutrons, and electron beams, with wavelengths of about 1 A, permits the study of the condensed state of matter, solids and liquids, down to atomic resolution. Determination of the atomic structure of crystals, i.e., the arrangement of atoms in a unit cell, is an important example of this line of investigation.
Publisher: Springer Science & Business Media
ISBN: 1475766246
Category : Science
Languages : en
Pages : 339
Book Description
Small-angle scattering of X rays and neutrons is a widely used diffraction method for studying the structure of matter. This method of elastic scattering is used in various branches of science and technology, includ ing condensed matter physics, molecular biology and biophysics, polymer science, and metallurgy. Many small-angle scattering studies are of value for pure science and practical applications. It is well known that the most general and informative method for investigating the spatial structure of matter is based on wave-diffraction phenomena. In diffraction experiments a primary beam of radiation influences a studied object, and the scattering pattern is analyzed. In principle, this analysis allows one to obtain information on the structure of a substance with a spatial resolution determined by the wavelength of the radiation. Diffraction methods are used for studying matter on all scales, from elementary particles to macro-objects. The use of X rays, neutrons, and electron beams, with wavelengths of about 1 A, permits the study of the condensed state of matter, solids and liquids, down to atomic resolution. Determination of the atomic structure of crystals, i.e., the arrangement of atoms in a unit cell, is an important example of this line of investigation.
Synchrotron Light Sources and Free-Electron Lasers
Author: Eberhard J. Jaeschke
Publisher: Springer
ISBN: 9783319143934
Category : Science
Languages : en
Pages : 0
Book Description
Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.
Publisher: Springer
ISBN: 9783319143934
Category : Science
Languages : en
Pages : 0
Book Description
Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.
Biological Small Angle Scattering: Techniques, Strategies and Tips
Author: Barnali Chaudhuri
Publisher: Springer
ISBN: 981106038X
Category : Science
Languages : en
Pages : 269
Book Description
This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins, and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications. The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS. The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for exploring the diversity of solution SAS methods and applications. Chapter 3 of this book is available open access under a CC BY 4.0 license at link.springer.com.
Publisher: Springer
ISBN: 981106038X
Category : Science
Languages : en
Pages : 269
Book Description
This book provides a clear, comprehensible and up-to-date description of how Small Angle Scattering (SAS) can help structural biology researchers. SAS is an efficient technique that offers structural information on how biological macromolecules behave in solution. SAS provides distinct and complementary data for integrative structural biology approaches in combination with other widely used probes, such as X-ray crystallography, Nuclear magnetic resonance, Mass spectrometry and Cryo-electron Microscopy. The development of brilliant synchrotron small-angle X-ray scattering (SAXS) beam lines has increased the number of researchers interested in solution scattering. SAS is especially useful for studying conformational changes in proteins, highly flexible proteins, and intrinsically disordered proteins. Small-angle neutron scattering (SANS) with neutron contrast variation is ideally suited for studying multi-component assemblies as well as membrane proteins that are stabilized in surfactant micelles or vesicles. SAS is also used for studying dynamic processes of protein fibrillation in amyloid diseases, and pharmaceutical drug delivery. The combination with size-exclusion chromatography further increases the range of SAS applications. The book is written by leading experts in solution SAS methodologies. The principles and theoretical background of various SAS techniques are included, along with practical aspects that range from sample preparation to data presentation for publication. Topics covered include techniques for improving data quality and analysis, as well as different scientific applications of SAS. With abundant illustrations and practical tips, we hope the clear explanations of the principles and the reviews on the latest progresses will serve as a guide through all aspects of biological solution SAS. The scope of this book is particularly relevant for structural biology researchers who are new to SAS. Advanced users of the technique will find it helpful for exploring the diversity of solution SAS methods and applications. Chapter 3 of this book is available open access under a CC BY 4.0 license at link.springer.com.
Modern Aspects of Small-Angle Scattering
Author: H. Brumberger
Publisher: Springer Science & Business Media
ISBN: 9401584575
Category : Technology & Engineering
Languages : en
Pages : 470
Book Description
Proceedings of the NATO Advanced Study Institute, Como, Italy, May 12--22, 1993
Publisher: Springer Science & Business Media
ISBN: 9401584575
Category : Technology & Engineering
Languages : en
Pages : 470
Book Description
Proceedings of the NATO Advanced Study Institute, Como, Italy, May 12--22, 1993
Handbook of Materials Characterization
Author: Surender Kumar Sharma
Publisher: Springer
ISBN: 3319929550
Category : Technology & Engineering
Languages : en
Pages : 612
Book Description
This book focuses on the widely used experimental techniques available for the structural, morphological, and spectroscopic characterization of materials. Recent developments in a wide range of experimental techniques and their application to the quantification of materials properties are an essential side of this book. Moreover, it provides concise but thorough coverage of the practical and theoretical aspects of the analytical techniques used to characterize a wide variety of functional nanomaterials. The book provides an overview of widely used characterization techniques for a broad audience: from beginners and graduate students, to advanced specialists in both academia and industry.
Publisher: Springer
ISBN: 3319929550
Category : Technology & Engineering
Languages : en
Pages : 612
Book Description
This book focuses on the widely used experimental techniques available for the structural, morphological, and spectroscopic characterization of materials. Recent developments in a wide range of experimental techniques and their application to the quantification of materials properties are an essential side of this book. Moreover, it provides concise but thorough coverage of the practical and theoretical aspects of the analytical techniques used to characterize a wide variety of functional nanomaterials. The book provides an overview of widely used characterization techniques for a broad audience: from beginners and graduate students, to advanced specialists in both academia and industry.
Small-Angle Scattering of X-Rays
Author: Andre Guinier
Publisher:
ISBN:
Category : X-rays
Languages : en
Pages : 268
Book Description
Publisher:
ISBN:
Category : X-rays
Languages : en
Pages : 268
Book Description
Physical Chemistry of Macromolecules
Author: S. F. Sun
Publisher: John Wiley & Sons
ISBN: 0471281387
Category : Technology & Engineering
Languages : en
Pages : 590
Book Description
Integrating coverage of polymers and biological macromolecules into a single text, Physical Chemistry of Macromolecules is carefully structured to provide a clear and consistent resource for beginners and professionals alike. The basic knowledge of both biophysical and physical polymer chemistry is covered, along with important terms, basic structural properties and relationships. This book includes end of chapter problems and references, and also: Enables users to improve basic knowledge of biophysical chemistry and physical polymer chemistry. Explores fully the principles of macromolecular chemistry, methods for determining molecular weight and configuration of molecules, the structure of macromolecules, and their separations.
Publisher: John Wiley & Sons
ISBN: 0471281387
Category : Technology & Engineering
Languages : en
Pages : 590
Book Description
Integrating coverage of polymers and biological macromolecules into a single text, Physical Chemistry of Macromolecules is carefully structured to provide a clear and consistent resource for beginners and professionals alike. The basic knowledge of both biophysical and physical polymer chemistry is covered, along with important terms, basic structural properties and relationships. This book includes end of chapter problems and references, and also: Enables users to improve basic knowledge of biophysical chemistry and physical polymer chemistry. Explores fully the principles of macromolecular chemistry, methods for determining molecular weight and configuration of molecules, the structure of macromolecules, and their separations.
Phasing in Crystallography
Author: Carmelo Giacovazzo
Publisher: Oxford University Press, USA
ISBN: 0199686998
Category : Science
Languages : en
Pages : 433
Book Description
The book describes phasing techniques in modern crystallography. The main text is dedicated to their simple description, and further mathematical details are contained in the appendices. Practical aspects are described for each specific method, making it a useful tool for the daily work of practising crystallographers.
Publisher: Oxford University Press, USA
ISBN: 0199686998
Category : Science
Languages : en
Pages : 433
Book Description
The book describes phasing techniques in modern crystallography. The main text is dedicated to their simple description, and further mathematical details are contained in the appendices. Practical aspects are described for each specific method, making it a useful tool for the daily work of practising crystallographers.