Single Molecule Electrophoresis and Optical Detection Using Thermoplastic Nanofluidic Devices

Single Molecule Electrophoresis and Optical Detection Using Thermoplastic Nanofluidic Devices PDF Author: Kumuditha Madushanka Weerakoon Ratnayake
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Single Molecule Electrophoresis and Optical Detection Using Thermoplastic Nanofluidic Devices

Single Molecule Electrophoresis and Optical Detection Using Thermoplastic Nanofluidic Devices PDF Author: Kumuditha Madushanka Weerakoon Ratnayake
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Spectroscopy and Dynamics of Single Molecules

Spectroscopy and Dynamics of Single Molecules PDF Author:
Publisher: Elsevier
ISBN: 0128164646
Category : Science
Languages : en
Pages : 404

Get Book Here

Book Description
Spectroscopy and Dynamics of Single Molecules: Methods and Applications reviews the most recent developments in spectroscopic methods and applications. Spectroscopic techniques are the chief experimental methods for testing theoretical models and research in this area plays an important role in stimulating new theoretical developments in physical chemistry. This book provides an authoritative insight into the latest advances in the field, highlighting new techniques, current applications, and potential future developments An ideal reference for chemists and physicists alike, Spectroscopy and Dynamics of Single Molecules: Methods and Applications is a useful guide for all those working in the research, design, or application of spectroscopic tools and techniques across a wide range of fields. - Includes the latest research on ultrafast vibrational and electronic dynamics, nonlinear spectroscopies, and single-molecule methods - Makes the content accessible to researchers in chemistry, biophysics, and chemical physics through a rigorous multi-disciplinary approach - Provides content edited by a world-renowned chemist with more than 30 years of experience in research and instruction

Nanoscale Devices for Optical Detection and Spectroscopy of Single Molecules

Nanoscale Devices for Optical Detection and Spectroscopy of Single Molecules PDF Author: Benjamin Ryan Cipriany
Publisher:
ISBN:
Category :
Languages : en
Pages : 72

Get Book Here

Book Description


Single Molecule Studies in a Nanofludic Channel

Single Molecule Studies in a Nanofludic Channel PDF Author: Benjamin Ryan Cipriany
Publisher:
ISBN:
Category :
Languages : en
Pages : 306

Get Book Here

Book Description
Microfluidics and nanofluidics have recently emerged as analytical tools for the study of biology. These devices have enabled the miniaturization of biological sample preparation and detection methods, toward consuming less sample volume and improving the sensitivity and speed of analysis. This thesis explores methods for rapid detection and sorting of individual biomolecules within a nanofluidic channel. In these devices, constructed using thin-film processing techniques, attoliter-scale volume confinement is formed to isolate individual, fluorophore-labeled biomolecules in solution for absolute quantification. These devices enable studies of the unique attributes of each molecule, often masked in ensemble-averaged measurements. Statistical sampling of many molecules is achieved by voltage-actuated, electrokinetic flow within the nanofluidic device to precisely control molecule analysis rate and achieve high throughput single molecule detection (SMD). This nanofluidic technology is applied to epigenetic analysis, enabling the study of epigenetic modifications at a single molecule level. Viable epigenetic analysis within a nanofluidic device is demonstrated using chromatin, DNA bound with histone proteins, which is shown to remain in its native state during nanofluidic confinement and electrokinetic flow under physiologically-relevant conditions. Detection of an epigenetic modification, DNA methylation, is also demonstrated to elucidate its potential for detecting multiple epigenetic marks on an individual molecule. Subsequently, an architecture for automated, high-speed sorting of individual molecules is developed. In this architecture, digital signal processing methods are implemented in a field programmable gate array to achieve real-time SMD. An electric circuit model is developed to actuate and switch electrokinetic flow of molecules, partitioning them into branches of a bifurcated nanofluidic device. An optical system for parallel SMD is realized to experimentally validate the actuation of molecule sorting in-situ. Combined, these components are utilized in automated, fluorescence-activated sorting of individual, methylated DNA molecules, which were then collected for further analysis. This device is reconfigurable and can be generalized for application to fluorescence-activated separations of other molecule types. Finally, a study of various methods for optofluidic integration is presented. The optical properties of fused-silica, silicon nitride, polydimethylsiloxane, hydrogen silisequioxane, and chemical vapor deposited oxides are investigated to consider their use in SMD applications requiring ultra-low autofluorescence and high confinement of the optical probe volume. Findings were then applied to form an optical waveguide as an fluorescence excitation source toward the dense integration of optical and nanofluidic components.

Single Molecule Sensing Beyond Fluorescence

Single Molecule Sensing Beyond Fluorescence PDF Author: Warwick Bowen
Publisher: Springer Nature
ISBN: 3030903397
Category : Science
Languages : en
Pages : 426

Get Book Here

Book Description
This book provides an interesting snapshot of recent advances in the field of single molecule nanosensing. The ability to sense single molecules, and to precisely monitor and control their motion is crucial to build a microscopic understanding of key processes in nature, from protein folding to chemical reactions. Recently a range of new techniques have been developed that allow single molecule sensing and control without the use of fluorescent labels. This volume provides an overview of recent advances that take advantage of micro- and nanoscale sensing technologies and provide the prospect for rapid future progress. The book endeavors to provide basic introductions to key techniques, recent research highlights, and an outlook on big challenges in the field and where it will go in future. It is a valuable contribution to the field of single molecule nanosensing and it will be of great interest to graduates and researchers working in this topic.

Combining Nanofluidics and Plasmonics for Single Molecule Detection

Combining Nanofluidics and Plasmonics for Single Molecule Detection PDF Author: Melanie M. West
Publisher:
ISBN:
Category : Nanofluids
Languages : en
Pages : 107

Get Book Here

Book Description
Single molecule detection is limited by the small scattering cross-section of molecules which leads to weak optical signals that can be obscured by background noise. The combination of plasmonics and nanofluidics in an integrated nano-device has the potential to provide the signal enhancement necessary for the detection of single molecules. The purpose of this investigation was to optimize the fabrication of an optofluidic device that integrates a nanochannel with a plasmonic bowtie antenna. The fluidic structure of the device was fabricated using UV-nanoimprint lithography, and the gold plasmonic antennas were fabricated using a shadow evaporation and lift-off process. The effect of electron beam lithography doses on the resolution of antenna-nanochannel configurations was studied to minimize antenna gap size while maintaining the integrity of the imprinted features. The smallest antenna gap size that was achieved was 46 nm. The antennas were characterized using dark field spectroscopy to find the resonance shift, which indicated the appropriate range for optical signal enhancement. The dark field scattering results showed antennas with a broad and well-defined resonance shift that ranged from 650 - 800 nm. The Raman scattering results showed the highest enhancement factor (EF = 2) for antennas with an "inverted configuration," which involved having the triangles of the antenna facing back-to-back rather than the more conventional tip-to-tip bowtie arrangement.

Combined Nanochannel-nanopore Device for Single- Molecule DNA Analysis and Manipulation

Combined Nanochannel-nanopore Device for Single- Molecule DNA Analysis and Manipulation PDF Author: Yuning Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
"Nanofluidic devices, containing features with dimensions of 1-100 nm, allow for the direct detection, analysis and manipulation of single molecule analytes. In particular, over the past ten years, there has been increasing interest in developing nanofluidic devices capable of analyzing DNA at the single-molecule level, with the goal of developing high throughput mapping and eventually sequencing technology. Part of this thesis will be focusing on single-molecular DNA detection using solid state nanopores. The nanopore fabrication technique via electron beam ablation will be presented. Noise reduction is affected by coating a layer of PDMS(polydimethylsiloxane) on the nanopore supporting chip. Different folding states of DNA molecules translocating through the nanopore are observed. Since the classic nanopore setup has low signal to noise ratio, we have successfully fabricated a novel micro/nanoiudic device combining nanopore detectors with nanochannels devices by embedding a nanopore inside the nanochannel. The device concept, device fabrication, theoretical analysis and preliminary results will be covered in this thesis." --

Single-molecule DNA Analysis in Nanofluidic Devices

Single-molecule DNA Analysis in Nanofluidic Devices PDF Author: Miao Yu
Publisher:
ISBN:
Category : DNA
Languages : en
Pages : 130

Get Book Here

Book Description


Nanofluidic Single Molecule Detection (SMD) for Protein Detection and Interaction Dynamics Study

Nanofluidic Single Molecule Detection (SMD) for Protein Detection and Interaction Dynamics Study PDF Author: Nan Jing
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The objective of this work is to develop a micro/nanofluidic-based single molecule detection (SMD) scheme, which would allow us to inspect individual protein or protein complex study protein-protein interactions and their dynamics. This is a collaboration work with MD Anderson Cancer Center and we applied this scheme to study functions of various proteins related to cancer progression in hope to shed new light on cancer research. State-of-the-art micro/nano-fabrication technology is used to provide fused silica micro/nano-fluidic channel devices as our detection platform. Standard contact photolithography, projection photolithography and advanced electron-beam lithography are used to fabricate micro/nano-fluidic channel with width ranging from 100nm to 2[micron]. The dimensions of these miniaturized biochips are designed to ensure single molecule resolution during detection and shrinking the detection volume leads to increase in signal-to-noise ratio, which is very critical for SMD. To minimize surface adsorption of protein, a fused silica channel surface coating procedure is also developed and significantly improved the detection efficiency. A fluorescent-labeled protein sample solution is filled in the fluidic channel by capillary force, and proteins are electro-kinetically driven through the fluidic channel with external voltage source. Commercial functionalized Quantum Dots (Qdots) are used as fluorescent labels due to its various advantages over conventional organic dyes for single molecule multi-color detection application. A fluorescence correlation spectrometer system, equipped with a 375nm diode laser, 60x water immersion objective with N.A. of 1.2 and two avalanche photodiodes (APD) is implemented to excite single molecules as well as collect emitted fluorescence signals. A two-dimensional photon burst analysis technique (photon counts vs. burst width) is developed to analyze individual single molecule events. We are able to identify target protein or protein complex directly from cell lysate based on fluorescence photon counts, as well as study the dynamics of protein-protein interactions. More importantly, with this technique we are also able to assess interactions between three proteins, which cannot be done with current ensemble measurement techniques. In summary, the technique described in this work has the advantages of high sensitivity, short processing time (2-3 minutes), very small sample consumption and high resolution quantitative analysis. It could potentially revolutionize the area of protein interaction research and provides us with more clues for the future of cancer diagnostics and treatments.

Advances in Lightweight Materials and Structures

Advances in Lightweight Materials and Structures PDF Author: A. Praveen Kumar
Publisher: Springer Nature
ISBN: 9811578273
Category : Technology & Engineering
Languages : en
Pages : 827

Get Book Here

Book Description
This book presents select proceedings of the International Conference on Advanced Lightweight Materials and Structures (ICALMS) 2020, and discusses the triad of processing, structure, and various properties of lightweight materials. It provides a well-balanced insight into materials science and mechanics of both synthetic and natural composites. The book includes topics such as nano composites for lightweight structures, impact and failure of structures, biomechanics and biomedical engineering, nanotechnology and micro-engineering, tool design and manufacture for producing lightweight components, joining techniques for lightweight structures for similar and dissimilar materials, design for manufacturing, reliability and safety, robotics, automation and control, fatigue and fracture mechanics, and friction stir welding in lightweight sandwich structures. The book also discusses latest research in composite materials and their applications in the field of aerospace, construction, wind energy, automotive, electronics and so on. Given the range of topics covered, this book can be a useful resource for beginners, researchers and professionals interested in the wide ranging applications of lightweight structures.