Silicon Anode Systems for Lithium-Ion Batteries

Silicon Anode Systems for Lithium-Ion Batteries PDF Author: Prashant Kumta
Publisher: Elsevier
ISBN: 0323851819
Category : Technology & Engineering
Languages : en
Pages : 538

Get Book Here

Book Description
Silicon Anode Systems for Lithium-Ion Batteries is an introduction to silicon anodes as an alternative to traditional graphite-based anodes. The book provides a comprehensive overview including abundance, system voltage, and capacity. It provides key insights into the basic challenges faced by the materials system such as new configurations and concepts for overcoming the expansion and contraction related problems. This book has been written for the practitioner, researcher or developer of commercial technologies. - Provides a thorough explanation of the advantages, challenge, materials science, and commercial prospects of silicon and related anode materials for lithium-ion batteries - Provides insights into practical issues including processing and performance of advanced Si-based materials in battery-relevant materials systems - Discusses suppressants in electrolytes to minimize adverse effects of solid electrolyte interphase (SEI) formation and safety limitations associated with this technology

Silicon Anode Systems for Lithium-Ion Batteries

Silicon Anode Systems for Lithium-Ion Batteries PDF Author: Prashant Kumta
Publisher: Elsevier
ISBN: 0323851819
Category : Technology & Engineering
Languages : en
Pages : 538

Get Book Here

Book Description
Silicon Anode Systems for Lithium-Ion Batteries is an introduction to silicon anodes as an alternative to traditional graphite-based anodes. The book provides a comprehensive overview including abundance, system voltage, and capacity. It provides key insights into the basic challenges faced by the materials system such as new configurations and concepts for overcoming the expansion and contraction related problems. This book has been written for the practitioner, researcher or developer of commercial technologies. - Provides a thorough explanation of the advantages, challenge, materials science, and commercial prospects of silicon and related anode materials for lithium-ion batteries - Provides insights into practical issues including processing and performance of advanced Si-based materials in battery-relevant materials systems - Discusses suppressants in electrolytes to minimize adverse effects of solid electrolyte interphase (SEI) formation and safety limitations associated with this technology

Silicon Anode Systems for Lithium-Ion Batteries

Silicon Anode Systems for Lithium-Ion Batteries PDF Author: Prashant N. Kumta
Publisher: Elsevier
ISBN: 0128196602
Category : Technology & Engineering
Languages : en
Pages : 536

Get Book Here

Book Description
Intro -- Silicon Anode Systems for Lithium-Ion Batteries -- Copyright -- Contents -- Contributors -- Preface -- Part I: Introduction and background -- Part II: Mechanical properties -- Part III: Electrolytes and surface electrolyte interphase issues -- Part IV: Achieving high(er) performance: Modeling and experimental perspectives -- Part V: Future directions: Novel devices and space applications -- Part I: Introduction and background -- Chapter 1: Silicon anode systems for lithium-ion batteries -- 1.1. Introduction -- 1.2. The SiLi alloy: A material perspective -- 1.3. The SiLi alloy: An electrode perspective -- 1.3.1.1. Volume expansion and material pulverization: The importance of size and nano-structuring -- 1.3.1.2. Pulverization and delamination: The importance of polymer composites and binders -- 1.3.1.3. The silicon/electrolyte interphase -- 1.4. Conclusions: Summary and perspective -- References -- Chapter 2: Recent advances in silicon materials for Li-ion batteries: Novel processing, alternative raw materials, and pr ... -- 2.1. Introduction -- 2.2. Hybrid and alloy-based silicon-containing materials -- 2.2.1. Carbon-silicon hybrid materials -- 2.2.2. Processing hybrid anodes: Fundamental vs. practical considerations -- 2.2.3. Silicon-metal alloy anodes -- 2.2.4. Oxide-containing anodes -- 2.3. Alternative raw materials and novel processing methods -- 2.3.1. Recycling of silicon-containing industrial sources -- 2.3.2. Silicon sourced from biomass and clays -- 2.3.3. Magnesiothermic and metallic melt processing -- 2.3.4. Nano-silicon derived from diatomite and inspired by nature -- 2.3.5. Other novel processing methods -- 2.4. Conclusions -- References -- Part II: Mechanical properties -- Chapter 3: Computational study on the effects of mechanical constraint on the performance of silicon nanosheets as anode ... -- 3.1. Introduction.

Nanomaterials for Lithium-Ion Batteries

Nanomaterials for Lithium-Ion Batteries PDF Author: Rachid Yazami
Publisher: CRC Press
ISBN: 9814316407
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
This book covers the most recent advances in the science and technology of nanostructured materials for lithium-ion application. With contributions from renowned scientists and technologists, the chapters discuss state-of-the-art research on nanostructured anode and cathode materials, some already used in commercial batteries and others still in development. They include nanostructured anode materials based on Si, Ge, Sn, and other metals and metal oxides together with cathode materials of olivine, the hexagonal and spinel crystal structures.

Lithium-ion Batteries

Lithium-ion Batteries PDF Author: Perla B. Balbuena
Publisher: World Scientific
ISBN: 1860943624
Category : Science
Languages : en
Pages : 424

Get Book Here

Book Description
This invaluable book focuses on the mechanisms of formation of a solid-electrolyte interphase (SEI) on the electrode surfaces of lithium-ion batteries. The SEI film is due to electromechanical reduction of species present in the electrolyte. It is widely recognized that the presence of the film plays an essential role in the battery performance, and its very nature can determine an extended (or shorter) life for the battery. In spite of the numerous related research efforts, details on the stability of the SEI composition and its influence on the battery capacity are still controversial. This book carefully analyzes and discusses the most recent findings and advances on this topic.

Lithium Batteries

Lithium Batteries PDF Author: Gholam-Abbas Nazri
Publisher: Springer Science & Business Media
ISBN: 0387926747
Category : Science
Languages : en
Pages : 725

Get Book Here

Book Description
Lithium Batteries: Science and Technology is an up-to-date and comprehensive compendium on advanced power sources and energy related topics. Each chapter is a detailed and thorough treatment of its subject. The volume includes several tutorials and contributes to an understanding of the many fields that impact the development of lithium batteries. Recent advances on various components are included and numerous examples of innovation are presented. Extensive references are given at the end of each chapter. All contributors are internationally recognized experts in their respective specialty. The fundamental knowledge necessary for designing new battery materials with desired physical and chemical properties including structural, electronic and reactivity are discussed. The molecular engineering of battery materials is treated by the most advanced theoretical and experimental methods.

Lithium-ion Batteries Enabled by Silicon Anodes

Lithium-ion Batteries Enabled by Silicon Anodes PDF Author: Chunmei Ban
Publisher: IET
ISBN: 1785619551
Category : Technology & Engineering
Languages : en
Pages : 471

Get Book Here

Book Description
Model predictive control (MPC) is a method for controlling a process while satisfying a set of constraints. The use of MPC for controlling power systems has been gaining traction in recent years. This work presents the use of MPC for distributed renewable power generation in microgrids.

Advanced Battery Materials

Advanced Battery Materials PDF Author: Chunwen Sun
Publisher: John Wiley & Sons
ISBN: 1119407702
Category : Technology & Engineering
Languages : en
Pages : 639

Get Book Here

Book Description
This book details the latest R&D in electrochemical energy storage technologies for portable electronics and electric vehicle applications. During the past three decades, great progress has been made in R & D of various batteries in terms of energy density increase and cost reduction. One of the biggest challenges is increasing the energy density to achieve longer endurance time. In this book, recent research and development in advanced electrode materials for electrochemical energy storage devices is covered. Topics covered in this important book include: Carbon anode materials for sodium-ion batteries Lithium titanate-based lithium-ion batteries Rational material design and performance optimization of transition metal oxide-based lithium ion battery anodes Effects of graphene on the electrochemical properties of the electrode of lithium ion batteries Silicon-based lithium-ion battery anodes Mo-based anode materials for alkali metal ion batteries Lithium-sulfur batteries Graphene in Lithium-Ion/Lithium-Sulfur Batteries Graphene-ionic liquid supercapacitors Battery electrodes based on carbon species and conducting polymers Doped graphene for electrochemical energy storage systems Processing of graphene oxide for enhanced electrical properties

Electrochemical Studies in Cyclic Esters

Electrochemical Studies in Cyclic Esters PDF Author: William Sidney Harris
Publisher:
ISBN:
Category : Electrochemical analysis
Languages : en
Pages : 82

Get Book Here

Book Description


Lithium-Ion Batteries: Basics and Applications

Lithium-Ion Batteries: Basics and Applications PDF Author: Reiner Korthauer
Publisher: Springer
ISBN: 3662530716
Category : Technology & Engineering
Languages : en
Pages : 417

Get Book Here

Book Description
The handbook focuses on a complete outline of lithium-ion batteries. Just before starting with an exposition of the fundamentals of this system, the book gives a short explanation of the newest cell generation. The most important elements are described as negative / positive electrode materials, electrolytes, seals and separators. The battery disconnect unit and the battery management system are important parts of modern lithium-ion batteries. An economical, faultless and efficient battery production is a must today and is represented with one chapter in the handbook. Cross-cutting issues like electrical, chemical, functional safety are further topics. Last but not least standards and transportation themes are the final chapters of the handbook. The different topics of the handbook provide a good knowledge base not only for those working daily on electrochemical energy storage, but also to scientists, engineers and students concerned in modern battery systems.

Emerging Nanotechnologies in Rechargeable Energy Storage Systems

Emerging Nanotechnologies in Rechargeable Energy Storage Systems PDF Author: Lide M Rodriguez-Martinez
Publisher: William Andrew
ISBN: 0323429963
Category : Technology & Engineering
Languages : en
Pages : 348

Get Book Here

Book Description
Emerging Nanotechnologies in Rechargeable Energy Storage Systems addresses the technical state-of-the-art of nanotechnology for rechargeable energy storage systems. Materials characterization and device-modeling aspects are covered in detail, with additional sections devoted to the application of nanotechnology in batteries for electrical vehicles. In the later part of the book, safety and regulatory issues are thoroughly discussed. Users will find a valuable source of information on the latest developments in nanotechnology in rechargeable energy storage systems. This book will be of great use to researchers and graduate students in the fields of nanotechnology, electrical energy storage, and those interested in materials and electrochemical cell development. - Gives readers working in the rechargeable energy storage sector a greater awareness on how novel nanotechnology oriented methods can help them develop higher-performance batteries and supercapacitor systems - Provides focused coverage of the development, process, characterization techniques, modeling, safety and applications of nanomaterials for rechargeable energy storage systems - Presents readers with an informed choice in materials selection for rechargeable energy storage devices