Author: Yair Shapira
Publisher: World Scientific
ISBN: 9811261792
Category : Science
Languages : en
Pages : 481
Book Description
Why learn set theory? This book provides the answer — it is interesting, and also useful! Taking a new approach and looking from a fresh perspective, the discussion flows in a friendly and transparent way, supplemented with a lot of examples and figures. This makes the theory easily comprehensible: the proofs get vivid and visual, enveloped with interesting applications for students in (applied) math, physics, and engineering. Given the theory and the applications, the book could serve as a textbook in four (undergraduate) math courses: Introduction to set theory and its application; Chaos theory and stability — a geometrical point of view; Functional analysis — Han-Banach theory; and Cryptography with quantum computing. It teaches set theory from the basics, including the axiom of choice, the well ordering theorem, and Zorn's lemma. Furthermore, it uses Cantor's set to introduce chaos theory from a geometrical point of view. Moreover, it introduces the binomial formula (and other related formulas), and uses them in quantum statistical mechanics. And finally, it uses Zorn's lemma in functional analysis, general relativity, and quantum mechanics. There are also practical applications in cryptography, error correction, quantum computing and programming.
Set Theory And Its Applications In Physics And Computing
Author: Yair Shapira
Publisher: World Scientific
ISBN: 9811261792
Category : Science
Languages : en
Pages : 481
Book Description
Why learn set theory? This book provides the answer — it is interesting, and also useful! Taking a new approach and looking from a fresh perspective, the discussion flows in a friendly and transparent way, supplemented with a lot of examples and figures. This makes the theory easily comprehensible: the proofs get vivid and visual, enveloped with interesting applications for students in (applied) math, physics, and engineering. Given the theory and the applications, the book could serve as a textbook in four (undergraduate) math courses: Introduction to set theory and its application; Chaos theory and stability — a geometrical point of view; Functional analysis — Han-Banach theory; and Cryptography with quantum computing. It teaches set theory from the basics, including the axiom of choice, the well ordering theorem, and Zorn's lemma. Furthermore, it uses Cantor's set to introduce chaos theory from a geometrical point of view. Moreover, it introduces the binomial formula (and other related formulas), and uses them in quantum statistical mechanics. And finally, it uses Zorn's lemma in functional analysis, general relativity, and quantum mechanics. There are also practical applications in cryptography, error correction, quantum computing and programming.
Publisher: World Scientific
ISBN: 9811261792
Category : Science
Languages : en
Pages : 481
Book Description
Why learn set theory? This book provides the answer — it is interesting, and also useful! Taking a new approach and looking from a fresh perspective, the discussion flows in a friendly and transparent way, supplemented with a lot of examples and figures. This makes the theory easily comprehensible: the proofs get vivid and visual, enveloped with interesting applications for students in (applied) math, physics, and engineering. Given the theory and the applications, the book could serve as a textbook in four (undergraduate) math courses: Introduction to set theory and its application; Chaos theory and stability — a geometrical point of view; Functional analysis — Han-Banach theory; and Cryptography with quantum computing. It teaches set theory from the basics, including the axiom of choice, the well ordering theorem, and Zorn's lemma. Furthermore, it uses Cantor's set to introduce chaos theory from a geometrical point of view. Moreover, it introduces the binomial formula (and other related formulas), and uses them in quantum statistical mechanics. And finally, it uses Zorn's lemma in functional analysis, general relativity, and quantum mechanics. There are also practical applications in cryptography, error correction, quantum computing and programming.
Set Theory and Its Applications in Physics and Computing
Author: Yair Shapira
Publisher:
ISBN: 9789811261770
Category :
Languages : en
Pages : 0
Book Description
Why learn set theory? This book provides the answer -- it is interesting, and also useful! Taking a new approach and looking from a fresh perspective, the discussion flows in a friendly and transparent way, supplemented with a lot of examples and figures. This makes the theory easily comprehensible: the proofs get vivid and visual, enveloped with interesting applications for students in (applied) math, physics, and engineering. Given the theory and the applications, the book could serve as a textbook in four (undergraduate) math courses: Introduction to set theory and its application; Chaos theory and stability -- a geometrical point of view; Functional analysis -- Han-Banach theory; and Cryptography with quantum computing. It teaches set theory from the basics, including the axiom of choice, the well ordering theorem, and Zorn's lemma. Furthermore, it uses Cantor's set to introduce chaos theory from a geometrical point of view. Moreover, it introduces the binomial formula (and other related formulas), and uses them in quantum statistical mechanics. And finally, it uses Zorn's lemma in functional analysis, general relativity, and quantum mechanics. There are also practical applications in cryptography, error correction, quantum computing and programming.
Publisher:
ISBN: 9789811261770
Category :
Languages : en
Pages : 0
Book Description
Why learn set theory? This book provides the answer -- it is interesting, and also useful! Taking a new approach and looking from a fresh perspective, the discussion flows in a friendly and transparent way, supplemented with a lot of examples and figures. This makes the theory easily comprehensible: the proofs get vivid and visual, enveloped with interesting applications for students in (applied) math, physics, and engineering. Given the theory and the applications, the book could serve as a textbook in four (undergraduate) math courses: Introduction to set theory and its application; Chaos theory and stability -- a geometrical point of view; Functional analysis -- Han-Banach theory; and Cryptography with quantum computing. It teaches set theory from the basics, including the axiom of choice, the well ordering theorem, and Zorn's lemma. Furthermore, it uses Cantor's set to introduce chaos theory from a geometrical point of view. Moreover, it introduces the binomial formula (and other related formulas), and uses them in quantum statistical mechanics. And finally, it uses Zorn's lemma in functional analysis, general relativity, and quantum mechanics. There are also practical applications in cryptography, error correction, quantum computing and programming.
Probability and Finance
Author: Glenn Shafer
Publisher: John Wiley & Sons
ISBN: 0471461717
Category : Business & Economics
Languages : en
Pages : 438
Book Description
Provides a foundation for probability based on game theory rather than measure theory. A strong philosophical approach with practical applications. Presents in-depth coverage of classical probability theory as well as new theory.
Publisher: John Wiley & Sons
ISBN: 0471461717
Category : Business & Economics
Languages : en
Pages : 438
Book Description
Provides a foundation for probability based on game theory rather than measure theory. A strong philosophical approach with practical applications. Presents in-depth coverage of classical probability theory as well as new theory.
Linear Algebra and Group Theory for Physicists and Engineers
Author: Yair Shapira
Publisher: Springer Nature
ISBN: 3031224221
Category : Mathematics
Languages : en
Pages : 583
Book Description
This textbook demonstrates the strong interconnections between linear algebra and group theory by presenting them simultaneously, a pedagogical strategy ideal for an interdisciplinary audience. Being approached together at the same time, these two topics complete one another, allowing students to attain a deeper understanding of both subjects. The opening chapters introduce linear algebra with applications to mechanics and statistics, followed by group theory with applications to projective geometry. Then, high-order finite elements are presented to design a regular mesh and assemble the stiffness and mass matrices in advanced applications in quantum chemistry and general relativity. This text is ideal for undergraduates majoring in engineering, physics, chemistry, computer science, or applied mathematics. It is mostly self-contained—readers should only be familiar with elementary calculus. There are numerous exercises, with hints or full solutions provided. A series of roadmaps are also provided to help instructors choose the optimal teaching approach for their discipline. The second edition has been revised and updated throughout and includes new material on the Jordan form, the Hermitian matrix and its eigenbasis, and applications in numerical relativity and electromagnetics.
Publisher: Springer Nature
ISBN: 3031224221
Category : Mathematics
Languages : en
Pages : 583
Book Description
This textbook demonstrates the strong interconnections between linear algebra and group theory by presenting them simultaneously, a pedagogical strategy ideal for an interdisciplinary audience. Being approached together at the same time, these two topics complete one another, allowing students to attain a deeper understanding of both subjects. The opening chapters introduce linear algebra with applications to mechanics and statistics, followed by group theory with applications to projective geometry. Then, high-order finite elements are presented to design a regular mesh and assemble the stiffness and mass matrices in advanced applications in quantum chemistry and general relativity. This text is ideal for undergraduates majoring in engineering, physics, chemistry, computer science, or applied mathematics. It is mostly self-contained—readers should only be familiar with elementary calculus. There are numerous exercises, with hints or full solutions provided. A series of roadmaps are also provided to help instructors choose the optimal teaching approach for their discipline. The second edition has been revised and updated throughout and includes new material on the Jordan form, the Hermitian matrix and its eigenbasis, and applications in numerical relativity and electromagnetics.
Quantum Field Theory and Condensed Matter
Author: Ramamurti Shankar
Publisher: Cambridge University Press
ISBN: 1108363989
Category : Science
Languages : en
Pages : 557
Book Description
Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm–Pines and Chern–Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.
Publisher: Cambridge University Press
ISBN: 1108363989
Category : Science
Languages : en
Pages : 557
Book Description
Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm–Pines and Chern–Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.
Introduction to Set Theory
Author: Karel Hrbacek
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 272
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 272
Book Description
Mathematics and Computation
Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Basic Topology
Author: M.A. Armstrong
Publisher: Springer Science & Business Media
ISBN: 1475717938
Category : Mathematics
Languages : en
Pages : 260
Book Description
In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for their calculating. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties help students gain a thorough understanding of the subject.
Publisher: Springer Science & Business Media
ISBN: 1475717938
Category : Mathematics
Languages : en
Pages : 260
Book Description
In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for their calculating. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties help students gain a thorough understanding of the subject.
Homotopy Type Theory: Univalent Foundations of Mathematics
Author:
Publisher: Univalent Foundations
ISBN:
Category :
Languages : en
Pages : 484
Book Description
Publisher: Univalent Foundations
ISBN:
Category :
Languages : en
Pages : 484
Book Description
Collected Papers. Volume X
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 1006
Book Description
This tenth volume of Collected Papers includes 86 papers in English and Spanish languages comprising 972 pages, written between 2014-2022 by the author alone or in collaboration with the following 105 co-authors (alphabetically ordered) from 26 countries: Abu Sufian, Ali Hassan, Ali Safaa Sadiq, Anirudha Ghosh, Assia Bakali, Atiqe Ur Rahman, Laura Bogdan, Willem K.M. Brauers, Erick González Caballero, Fausto Cavallaro, Gavrilă Calefariu, T. Chalapathi, Victor Christianto, Mihaela Colhon, Sergiu Boris Cononovici, Mamoni Dhar, Irfan Deli, Rebeca Escobar-Jara, Alexandru Gal, N. Gandotra, Sudipta Gayen, Vassilis C. Gerogiannis, Noel Batista Hernández, Hongnian Yu, Hongbo Wang, Mihaiela Iliescu, F. Nirmala Irudayam, Sripati Jha, Darjan Karabašević, T. Katican, Bakhtawar Ali Khan, Hina Khan, Volodymyr Krasnoholovets, R. Kiran Kumar, Manoranjan Kumar Singh, Ranjan Kumar, M. Lathamaheswari, Yasar Mahmood, Nivetha Martin, Adrian Mărgean, Octavian Melinte, Mingcong Deng, Marcel Migdalovici, Monika Moga, Sana Moin, Mohamed Abdel-Basset, Mohamed Elhoseny, Rehab Mohamed, Mohamed Talea, Kalyan Mondal, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Ihsan, Muhammad Naveed Jafar, Muhammad Rayees Ahmad, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Mujahid Abbas, Mumtaz Ali, Radu I. Munteanu, Ghulam Murtaza, Munazza Naz, Tahsin Oner, Gabrijela Popović, Surapati Pramanik, R. Priya, S.P. Priyadharshini, Midha Qayyum, Quang-Thinh Bui, Shazia Rana, Akbara Rezaei, Jesús Estupiñán Ricardo, Rıdvan Sahin, Saeeda Mirvakili, Said Broumi, A. A. Salama, Flavius Aurelian Sârbu, Ganeshsree Selvachandran, Javid Shabbir, Shio Gai Quek, Son Hoang Le, Florentin Smarandache, Dragiša Stanujkić, S. Sudha, Taha Yasin Ozturk, Zaigham Tahir, The Houw Iong, Ayse Topal, Alptekin Ulutaș, Maikel Yelandi Leyva Vázquez, Rizha Vitania, Luige Vlădăreanu, Victor Vlădăreanu, Ștefan Vlăduțescu, J. Vimala, Dan Valeriu Voinea, Adem Yolcu, Yongfei Feng, Abd El-Nasser H. Zaied, Edmundas Kazimieras Zavadskas.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 1006
Book Description
This tenth volume of Collected Papers includes 86 papers in English and Spanish languages comprising 972 pages, written between 2014-2022 by the author alone or in collaboration with the following 105 co-authors (alphabetically ordered) from 26 countries: Abu Sufian, Ali Hassan, Ali Safaa Sadiq, Anirudha Ghosh, Assia Bakali, Atiqe Ur Rahman, Laura Bogdan, Willem K.M. Brauers, Erick González Caballero, Fausto Cavallaro, Gavrilă Calefariu, T. Chalapathi, Victor Christianto, Mihaela Colhon, Sergiu Boris Cononovici, Mamoni Dhar, Irfan Deli, Rebeca Escobar-Jara, Alexandru Gal, N. Gandotra, Sudipta Gayen, Vassilis C. Gerogiannis, Noel Batista Hernández, Hongnian Yu, Hongbo Wang, Mihaiela Iliescu, F. Nirmala Irudayam, Sripati Jha, Darjan Karabašević, T. Katican, Bakhtawar Ali Khan, Hina Khan, Volodymyr Krasnoholovets, R. Kiran Kumar, Manoranjan Kumar Singh, Ranjan Kumar, M. Lathamaheswari, Yasar Mahmood, Nivetha Martin, Adrian Mărgean, Octavian Melinte, Mingcong Deng, Marcel Migdalovici, Monika Moga, Sana Moin, Mohamed Abdel-Basset, Mohamed Elhoseny, Rehab Mohamed, Mohamed Talea, Kalyan Mondal, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Ihsan, Muhammad Naveed Jafar, Muhammad Rayees Ahmad, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Mujahid Abbas, Mumtaz Ali, Radu I. Munteanu, Ghulam Murtaza, Munazza Naz, Tahsin Oner, Gabrijela Popović, Surapati Pramanik, R. Priya, S.P. Priyadharshini, Midha Qayyum, Quang-Thinh Bui, Shazia Rana, Akbara Rezaei, Jesús Estupiñán Ricardo, Rıdvan Sahin, Saeeda Mirvakili, Said Broumi, A. A. Salama, Flavius Aurelian Sârbu, Ganeshsree Selvachandran, Javid Shabbir, Shio Gai Quek, Son Hoang Le, Florentin Smarandache, Dragiša Stanujkić, S. Sudha, Taha Yasin Ozturk, Zaigham Tahir, The Houw Iong, Ayse Topal, Alptekin Ulutaș, Maikel Yelandi Leyva Vázquez, Rizha Vitania, Luige Vlădăreanu, Victor Vlădăreanu, Ștefan Vlăduțescu, J. Vimala, Dan Valeriu Voinea, Adem Yolcu, Yongfei Feng, Abd El-Nasser H. Zaied, Edmundas Kazimieras Zavadskas.