Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 3540345752
Category : Mathematics
Languages : en
Pages : 412
Book Description
An invaluable summary of research work done in the period from 1978 to the present
Serre's Problem on Projective Modules
Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 3540345752
Category : Mathematics
Languages : en
Pages : 412
Book Description
An invaluable summary of research work done in the period from 1978 to the present
Publisher: Springer Science & Business Media
ISBN: 3540345752
Category : Mathematics
Languages : en
Pages : 412
Book Description
An invaluable summary of research work done in the period from 1978 to the present
Ideals and Reality
Author: Friedrich Ischebeck
Publisher: Springer Science & Business Media
ISBN: 3540263705
Category : Mathematics
Languages : en
Pages : 339
Book Description
Besides giving an introduction to Commutative Algebra - the theory of c- mutative rings - this book is devoted to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are called free. So a finitely generated free R-module is of the form Rn for some n E IN, equipped with the usual operations. A module is called p- jective, iff it is a direct summand of a free one. Especially a finitely generated R-module P is projective iff there is an R-module Q with P @ Q S Rn for some n. Remarkably enough there do exist nonfree projective modules. Even there are nonfree P such that P @ Rm S Rn for some m and n. Modules P having the latter property are called stably free. On the other hand there are many rings, all of whose projective modules are free, e. g. local rings and principal ideal domains. (A commutative ring is called local iff it has exactly one maximal ideal. ) For two decades it was a challenging problem whether every projective module over the polynomial ring k[X1,. . .
Publisher: Springer Science & Business Media
ISBN: 3540263705
Category : Mathematics
Languages : en
Pages : 339
Book Description
Besides giving an introduction to Commutative Algebra - the theory of c- mutative rings - this book is devoted to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are called free. So a finitely generated free R-module is of the form Rn for some n E IN, equipped with the usual operations. A module is called p- jective, iff it is a direct summand of a free one. Especially a finitely generated R-module P is projective iff there is an R-module Q with P @ Q S Rn for some n. Remarkably enough there do exist nonfree projective modules. Even there are nonfree P such that P @ Rm S Rn for some m and n. Modules P having the latter property are called stably free. On the other hand there are many rings, all of whose projective modules are free, e. g. local rings and principal ideal domains. (A commutative ring is called local iff it has exactly one maximal ideal. ) For two decades it was a challenging problem whether every projective module over the polynomial ring k[X1,. . .
Projective Modules and Complete Intersections
Author: Satya Mandal
Publisher: Springer
ISBN: 3540695982
Category : Mathematics
Languages : en
Pages : 121
Book Description
In these notes on "Projective Modules and Complete Intersections" an account on the recent developments in research on this subject is presented. The author's preference for the technique of Patching isotopic isomorphisms due to Quillen, formalized by Plumsted, over the techniques of elementary matrices is evident here. The treatment of Basic Element theory here incorporates Plumstead's idea of the "generalized dimension functions." These notes are highly selfcontained and should be accessible to any graduate student in commutative algebra or algebraic geometry. They include fully self-contained presentations of the theorems of Ferrand-Szpiro, Cowsik-Nori and the techniques of Lindel.
Publisher: Springer
ISBN: 3540695982
Category : Mathematics
Languages : en
Pages : 121
Book Description
In these notes on "Projective Modules and Complete Intersections" an account on the recent developments in research on this subject is presented. The author's preference for the technique of Patching isotopic isomorphisms due to Quillen, formalized by Plumsted, over the techniques of elementary matrices is evident here. The treatment of Basic Element theory here incorporates Plumstead's idea of the "generalized dimension functions." These notes are highly selfcontained and should be accessible to any graduate student in commutative algebra or algebraic geometry. They include fully self-contained presentations of the theorems of Ferrand-Szpiro, Cowsik-Nori and the techniques of Lindel.
Integral Closure of Ideals, Rings, and Modules
Author: Craig Huneke
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446
Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Publisher: Cambridge University Press
ISBN: 0521688604
Category : Mathematics
Languages : en
Pages : 446
Book Description
Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Quasi-projective Moduli for Polarized Manifolds
Author: Eckart Viehweg
Publisher: Springer Science & Business Media
ISBN: 3642797458
Category : Mathematics
Languages : en
Pages : 329
Book Description
The concept of moduli goes back to B. Riemann, who shows in [68] that the isomorphism class of a Riemann surface of genus 9 ~ 2 depends on 3g - 3 parameters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [59]), as well as solutions in some cases. It is the aim of this monograph to present methods which allow over a field of characteristic zero to construct certain moduli schemes together with an ample sheaf. Our main source of inspiration is D. Mumford's "Geometric In variant Theory". We will recall the necessary tools from his book [59] and prove the "Hilbert-Mumford Criterion" and some modified version for the stability of points under group actions. As in [78], a careful study of positivity proper ties of direct image sheaves allows to use this criterion to construct moduli as quasi-projective schemes for canonically polarized manifolds and for polarized manifolds with a semi-ample canonical sheaf.
Publisher: Springer Science & Business Media
ISBN: 3642797458
Category : Mathematics
Languages : en
Pages : 329
Book Description
The concept of moduli goes back to B. Riemann, who shows in [68] that the isomorphism class of a Riemann surface of genus 9 ~ 2 depends on 3g - 3 parameters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [59]), as well as solutions in some cases. It is the aim of this monograph to present methods which allow over a field of characteristic zero to construct certain moduli schemes together with an ample sheaf. Our main source of inspiration is D. Mumford's "Geometric In variant Theory". We will recall the necessary tools from his book [59] and prove the "Hilbert-Mumford Criterion" and some modified version for the stability of points under group actions. As in [78], a careful study of positivity proper ties of direct image sheaves allows to use this criterion to construct moduli as quasi-projective schemes for canonically polarized manifolds and for polarized manifolds with a semi-ample canonical sheaf.
Introduction to Commutative Algebra and Algebraic Geometry
Author: Ernst Kunz
Publisher: Springer Science & Business Media
ISBN: 1461459877
Category : Mathematics
Languages : en
Pages : 253
Book Description
Originally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.
Publisher: Springer Science & Business Media
ISBN: 1461459877
Category : Mathematics
Languages : en
Pages : 253
Book Description
Originally published in 1985, this classic textbook is an English translation of Einführung in die kommutative Algebra und algebraische Geometrie. As part of the Modern Birkhäuser Classics series, the publisher is proud to make Introduction to Commutative Algebra and Algebraic Geometry available to a wider audience. Aimed at students who have taken a basic course in algebra, the goal of the text is to present important results concerning the representation of algebraic varieties as intersections of the least possible number of hypersurfaces and—a closely related problem—with the most economical generation of ideals in Noetherian rings. Along the way, one encounters many basic concepts of commutative algebra and algebraic geometry and proves many facts which can then serve as a basic stock for a deeper study of these subjects.
Leavitt Path Algebras
Author: Gene Abrams
Publisher: Springer
ISBN: 1447173449
Category : Mathematics
Languages : en
Pages : 296
Book Description
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and symbolic dynamics. With its descriptive writing style, this book is highly accessible.
Publisher: Springer
ISBN: 1447173449
Category : Mathematics
Languages : en
Pages : 296
Book Description
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and symbolic dynamics. With its descriptive writing style, this book is highly accessible.
Quadratic Forms, Linear Algebraic Groups, and Cohomology
Author: Skip Garibaldi
Publisher: Springer Science & Business Media
ISBN: 1441962115
Category : Mathematics
Languages : en
Pages : 344
Book Description
Developments in Mathematics is a book series devoted to all areas of mathematics, pure and applied. The series emphasizes research monographs describing the latest advances. Edited volumes that focus on areas that have seen dramatic progress, or are of special interest, are encouraged as well.
Publisher: Springer Science & Business Media
ISBN: 1441962115
Category : Mathematics
Languages : en
Pages : 344
Book Description
Developments in Mathematics is a book series devoted to all areas of mathematics, pure and applied. The series emphasizes research monographs describing the latest advances. Edited volumes that focus on areas that have seen dramatic progress, or are of special interest, are encouraged as well.
Leavitt Path Algebras and Classical K-Theory
Author: A. A. Ambily
Publisher: Springer Nature
ISBN: 9811516111
Category : Mathematics
Languages : en
Pages : 340
Book Description
The book offers a comprehensive introduction to Leavitt path algebras (LPAs) and graph C*-algebras. Highlighting their significant connection with classical K-theory—which plays an important role in mathematics and its related emerging fields—this book allows readers from diverse mathematical backgrounds to understand and appreciate these structures. The articles on LPAs are mostly of an expository nature and the ones dealing with K-theory provide new proofs and are accessible to interested students and beginners of the field. It is a useful resource for graduate students and researchers working in this field and related areas, such as C*-algebras and symbolic dynamics.
Publisher: Springer Nature
ISBN: 9811516111
Category : Mathematics
Languages : en
Pages : 340
Book Description
The book offers a comprehensive introduction to Leavitt path algebras (LPAs) and graph C*-algebras. Highlighting their significant connection with classical K-theory—which plays an important role in mathematics and its related emerging fields—this book allows readers from diverse mathematical backgrounds to understand and appreciate these structures. The articles on LPAs are mostly of an expository nature and the ones dealing with K-theory provide new proofs and are accessible to interested students and beginners of the field. It is a useful resource for graduate students and researchers working in this field and related areas, such as C*-algebras and symbolic dynamics.
Lecture Notes in Algebraic Topology
Author: James F. Davis
Publisher: American Mathematical Society
ISBN: 1470473682
Category : Mathematics
Languages : en
Pages : 385
Book Description
The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.
Publisher: American Mathematical Society
ISBN: 1470473682
Category : Mathematics
Languages : en
Pages : 385
Book Description
The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.