Author: Jorge Picado
Publisher: Springer Nature
ISBN: 3030534790
Category : Mathematics
Languages : en
Pages : 296
Book Description
This book is the first systematic treatment of this area so far scattered in a vast number of articles. As in classical topology, concrete problems require restricting the (generalized point-free) spaces by various conditions playing the roles of classical separation axioms. These are typically formulated in the language of points; but in the point-free context one has either suitable translations, parallels, or satisfactory replacements. The interrelations of separation type conditions, their merits, advantages and disadvantages, and consequences are discussed. Highlights of the book include a treatment of the merits and consequences of subfitness, various approaches to the Hausdorff's axiom, and normality type axioms. Global treatment of the separation conditions put them in a new perspective, and, a.o., gave some of them unexpected importance. The text contains a lot of quite recent results; the reader will see the directions the area is taking, and may find inspiration for her/his further work. The book will be of use for researchers already active in the area, but also for those interested in this growing field (sometimes even penetrating into some parts of theoretical computer science), for graduate and PhD students, and others. For the reader's convenience, the text is supplemented with an Appendix containing necessary background on posets, frames and locales.
Separation in Point-Free Topology
Author: Jorge Picado
Publisher: Springer Nature
ISBN: 3030534790
Category : Mathematics
Languages : en
Pages : 296
Book Description
This book is the first systematic treatment of this area so far scattered in a vast number of articles. As in classical topology, concrete problems require restricting the (generalized point-free) spaces by various conditions playing the roles of classical separation axioms. These are typically formulated in the language of points; but in the point-free context one has either suitable translations, parallels, or satisfactory replacements. The interrelations of separation type conditions, their merits, advantages and disadvantages, and consequences are discussed. Highlights of the book include a treatment of the merits and consequences of subfitness, various approaches to the Hausdorff's axiom, and normality type axioms. Global treatment of the separation conditions put them in a new perspective, and, a.o., gave some of them unexpected importance. The text contains a lot of quite recent results; the reader will see the directions the area is taking, and may find inspiration for her/his further work. The book will be of use for researchers already active in the area, but also for those interested in this growing field (sometimes even penetrating into some parts of theoretical computer science), for graduate and PhD students, and others. For the reader's convenience, the text is supplemented with an Appendix containing necessary background on posets, frames and locales.
Publisher: Springer Nature
ISBN: 3030534790
Category : Mathematics
Languages : en
Pages : 296
Book Description
This book is the first systematic treatment of this area so far scattered in a vast number of articles. As in classical topology, concrete problems require restricting the (generalized point-free) spaces by various conditions playing the roles of classical separation axioms. These are typically formulated in the language of points; but in the point-free context one has either suitable translations, parallels, or satisfactory replacements. The interrelations of separation type conditions, their merits, advantages and disadvantages, and consequences are discussed. Highlights of the book include a treatment of the merits and consequences of subfitness, various approaches to the Hausdorff's axiom, and normality type axioms. Global treatment of the separation conditions put them in a new perspective, and, a.o., gave some of them unexpected importance. The text contains a lot of quite recent results; the reader will see the directions the area is taking, and may find inspiration for her/his further work. The book will be of use for researchers already active in the area, but also for those interested in this growing field (sometimes even penetrating into some parts of theoretical computer science), for graduate and PhD students, and others. For the reader's convenience, the text is supplemented with an Appendix containing necessary background on posets, frames and locales.
Frames and Locales
Author: Jorge Picado
Publisher: Springer Science & Business Media
ISBN: 3034801548
Category : Mathematics
Languages : en
Pages : 412
Book Description
Until the mid-twentieth century, topological studies were focused on the theory of suitable structures on sets of points. The concept of open set exploited since the twenties offered an expression of the geometric intuition of a "realistic" place (spot, grain) of non-trivial extent. Imitating the behaviour of open sets and their relations led to a new approach to topology flourishing since the end of the fifties.It has proved to be beneficial in many respects. Neglecting points, only little information was lost, while deeper insights have been gained; moreover, many results previously dependent on choice principles became constructive. The result is often a smoother, rather than a more entangled, theory. No monograph of this nature has appeared since Johnstone's celebrated Stone Spaces in 1983. The present book is intended as a bridge from that time to the present. Most of the material appears here in book form for the first time or is presented from new points of view. Two appendices provide an introduction to some requisite concepts from order and category theories.
Publisher: Springer Science & Business Media
ISBN: 3034801548
Category : Mathematics
Languages : en
Pages : 412
Book Description
Until the mid-twentieth century, topological studies were focused on the theory of suitable structures on sets of points. The concept of open set exploited since the twenties offered an expression of the geometric intuition of a "realistic" place (spot, grain) of non-trivial extent. Imitating the behaviour of open sets and their relations led to a new approach to topology flourishing since the end of the fifties.It has proved to be beneficial in many respects. Neglecting points, only little information was lost, while deeper insights have been gained; moreover, many results previously dependent on choice principles became constructive. The result is often a smoother, rather than a more entangled, theory. No monograph of this nature has appeared since Johnstone's celebrated Stone Spaces in 1983. The present book is intended as a bridge from that time to the present. Most of the material appears here in book form for the first time or is presented from new points of view. Two appendices provide an introduction to some requisite concepts from order and category theories.
Topology
Author: Paul L. Shick
Publisher: John Wiley & Sons
ISBN: 1118030583
Category : Mathematics
Languages : en
Pages : 291
Book Description
The essentials of point-set topology, complete with motivation and numerous examples Topology: Point-Set and Geometric presents an introduction to topology that begins with the axiomatic definition of a topology on a set, rather than starting with metric spaces or the topology of subsets of Rn. This approach includes many more examples, allowing students to develop more sophisticated intuition and enabling them to learn how to write precise proofs in a brand-new context, which is an invaluable experience for math majors. Along with the standard point-set topology topics—connected and path-connected spaces, compact spaces, separation axioms, and metric spaces—Topology covers the construction of spaces from other spaces, including products and quotient spaces. This innovative text culminates with topics from geometric and algebraic topology (the Classification Theorem for Surfaces and the fundamental group), which provide instructors with the opportunity to choose which "capstone" best suits his or her students. Topology: Point-Set and Geometric features: A short introduction in each chapter designed to motivate the ideas and place them into an appropriate context Sections with exercise sets ranging in difficulty from easy to fairly challenging Exercises that are very creative in their approaches and work well in a classroom setting A supplemental Web site that contains complete and colorful illustrations of certain objects, several learning modules illustrating complicated topics, and animations of particularly complex proofs
Publisher: John Wiley & Sons
ISBN: 1118030583
Category : Mathematics
Languages : en
Pages : 291
Book Description
The essentials of point-set topology, complete with motivation and numerous examples Topology: Point-Set and Geometric presents an introduction to topology that begins with the axiomatic definition of a topology on a set, rather than starting with metric spaces or the topology of subsets of Rn. This approach includes many more examples, allowing students to develop more sophisticated intuition and enabling them to learn how to write precise proofs in a brand-new context, which is an invaluable experience for math majors. Along with the standard point-set topology topics—connected and path-connected spaces, compact spaces, separation axioms, and metric spaces—Topology covers the construction of spaces from other spaces, including products and quotient spaces. This innovative text culminates with topics from geometric and algebraic topology (the Classification Theorem for Surfaces and the fundamental group), which provide instructors with the opportunity to choose which "capstone" best suits his or her students. Topology: Point-Set and Geometric features: A short introduction in each chapter designed to motivate the ideas and place them into an appropriate context Sections with exercise sets ranging in difficulty from easy to fairly challenging Exercises that are very creative in their approaches and work well in a classroom setting A supplemental Web site that contains complete and colorful illustrations of certain objects, several learning modules illustrating complicated topics, and animations of particularly complex proofs
The History of Continua
Author: Stewart Shapiro
Publisher: Oxford University Press, USA
ISBN: 0198809646
Category : Mathematics
Languages : en
Pages : 593
Book Description
Mathematical and philosophical thought about continuity has changed considerably over the ages, from Aristotle's insistence that a continuum is a unified whole, to the dominant account today, that a continuum is composed of infinitely many points. This book explores the key ideas and debates concerning continuity over more than 2500 years.
Publisher: Oxford University Press, USA
ISBN: 0198809646
Category : Mathematics
Languages : en
Pages : 593
Book Description
Mathematical and philosophical thought about continuity has changed considerably over the ages, from Aristotle's insistence that a continuum is a unified whole, to the dominant account today, that a continuum is composed of infinitely many points. This book explores the key ideas and debates concerning continuity over more than 2500 years.
The Real Numbers in Pointfree Topology
Author: Bernhard Banaschewski
Publisher:
ISBN:
Category : Frames (Combinatorial analysis)
Languages : en
Pages : 114
Book Description
Publisher:
ISBN:
Category : Frames (Combinatorial analysis)
Languages : en
Pages : 114
Book Description
Topology Through Inquiry
Author: Michael Starbird
Publisher: American Mathematical Soc.
ISBN: 1470462613
Category : Education
Languages : en
Pages : 330
Book Description
Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning—of mathematics and beyond—joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure.
Publisher: American Mathematical Soc.
ISBN: 1470462613
Category : Education
Languages : en
Pages : 330
Book Description
Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric motivation by starting with mod 2 coefficients. The authors are acknowledged masters of IBL-style teaching. This book gives students joy-filled, manageable challenges that incrementally develop their knowledge and skills. The exposition includes insightful framing of fruitful points of view as well as advice on effective thinking and learning. The text presumes only a modest level of mathematical maturity to begin, but students who work their way through this text will grow from mathematics students into mathematicians. Michael Starbird is a University of Texas Distinguished Teaching Professor of Mathematics. Among his works are two other co-authored books in the Mathematical Association of America's (MAA) Textbook series. Francis Su is the Benediktsson-Karwa Professor of Mathematics at Harvey Mudd College and a past president of the MAA. Both authors are award-winning teachers, including each having received the MAA's Haimo Award for distinguished teaching. Starbird and Su are, jointly and individually, on lifelong missions to make learning—of mathematics and beyond—joyful, effective, and available to everyone. This book invites topology students and teachers to join in the adventure.
From Sets and Types to Topology and Analysis
Author: Laura Crosilla
Publisher: Clarendon Press
ISBN: 0191524204
Category : Mathematics
Languages : en
Pages : 372
Book Description
This edited collection bridges the foundations and practice of constructive mathematics and focusses on the contrast between the theoretical developments, which have been most useful for computer science (eg constructive set and type theories), and more specific efforts on constructive analysis, algebra and topology. Aimed at academic logicians, mathematicians, philosophers and computer scientists Including, with contributions from leading researchers, it is up-to-date, highly topical and broad in scope. This is the latest volume in the Oxford Logic Guides, which also includes: 41. J.M. Dunn and G. Hardegree: Algebraic Methods in Philosophical Logic 42. H. Rott: Change, Choice and Inference: A study of belief revision and nonmonotoic reasoning 43. Johnstone: Sketches of an Elephant: A topos theory compendium, volume 1 44. Johnstone: Sketches of an Elephant: A topos theory compendium, volume 2 45. David J. Pym and Eike Ritter: Reductive Logic and Proof Search: Proof theory, semantics and control 46. D.M. Gabbay and L. Maksimova: Interpolation and Definability: Modal and Intuitionistic Logics 47. John L. Bell: Set Theory: Boolean-valued models and independence proofs, third edition
Publisher: Clarendon Press
ISBN: 0191524204
Category : Mathematics
Languages : en
Pages : 372
Book Description
This edited collection bridges the foundations and practice of constructive mathematics and focusses on the contrast between the theoretical developments, which have been most useful for computer science (eg constructive set and type theories), and more specific efforts on constructive analysis, algebra and topology. Aimed at academic logicians, mathematicians, philosophers and computer scientists Including, with contributions from leading researchers, it is up-to-date, highly topical and broad in scope. This is the latest volume in the Oxford Logic Guides, which also includes: 41. J.M. Dunn and G. Hardegree: Algebraic Methods in Philosophical Logic 42. H. Rott: Change, Choice and Inference: A study of belief revision and nonmonotoic reasoning 43. Johnstone: Sketches of an Elephant: A topos theory compendium, volume 1 44. Johnstone: Sketches of an Elephant: A topos theory compendium, volume 2 45. David J. Pym and Eike Ritter: Reductive Logic and Proof Search: Proof theory, semantics and control 46. D.M. Gabbay and L. Maksimova: Interpolation and Definability: Modal and Intuitionistic Logics 47. John L. Bell: Set Theory: Boolean-valued models and independence proofs, third edition
A Concise Course in Algebraic Topology
Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262
Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262
Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Logicism, Intuitionism, and Formalism
Author: Sten Lindström
Publisher: Springer Science & Business Media
ISBN: 1402089260
Category : Mathematics
Languages : en
Pages : 509
Book Description
This anthology reviews the programmes in the foundations of mathematics from the classical period and assesses their possible relevance for contemporary philosophy of mathematics. A special section is concerned with constructive mathematics.
Publisher: Springer Science & Business Media
ISBN: 1402089260
Category : Mathematics
Languages : en
Pages : 509
Book Description
This anthology reviews the programmes in the foundations of mathematics from the classical period and assesses their possible relevance for contemporary philosophy of mathematics. A special section is concerned with constructive mathematics.
Handbook of Algebra
Author:
Publisher: Elsevier
ISBN: 0080532977
Category : Mathematics
Languages : en
Pages : 1185
Book Description
Handbook of Algebra
Publisher: Elsevier
ISBN: 0080532977
Category : Mathematics
Languages : en
Pages : 1185
Book Description
Handbook of Algebra