Author: Maciej Zworski
Publisher: American Mathematical Soc.
ISBN: 0821883208
Category : Mathematics
Languages : en
Pages : 448
Book Description
"...A graduate level text introducing readers to semiclassical and microlocal methods in PDE." -- from xi.
Semiclassical Analysis
Author: Maciej Zworski
Publisher: American Mathematical Soc.
ISBN: 0821883208
Category : Mathematics
Languages : en
Pages : 448
Book Description
"...A graduate level text introducing readers to semiclassical and microlocal methods in PDE." -- from xi.
Publisher: American Mathematical Soc.
ISBN: 0821883208
Category : Mathematics
Languages : en
Pages : 448
Book Description
"...A graduate level text introducing readers to semiclassical and microlocal methods in PDE." -- from xi.
An Introduction to Semiclassical and Microlocal Analysis
Author: André Bach
Publisher: Springer Science & Business Media
ISBN: 1475744951
Category : Mathematics
Languages : en
Pages : 193
Book Description
This book presents the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics in a pedagogical, way and is mainly addressed to non-specialists in the subject. It is based on lectures taught by the author over several years, and includes many exercises providing outlines of useful applications of the semi-classical theory.
Publisher: Springer Science & Business Media
ISBN: 1475744951
Category : Mathematics
Languages : en
Pages : 193
Book Description
This book presents the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics in a pedagogical, way and is mainly addressed to non-specialists in the subject. It is based on lectures taught by the author over several years, and includes many exercises providing outlines of useful applications of the semi-classical theory.
Semiclassical Analysis, Witten Laplacians, and Statistical Mechanics
Author: Bernard Helffer
Publisher: World Scientific
ISBN: 9789812380982
Category : Mathematics
Languages : en
Pages : 200
Book Description
This important book explains how the technique of Witten Laplacians may be useful in statistical mechanics. It considers the problem of analyzing the decay of correlations, after presenting its origin in statistical mechanics. In addition, it compares the Witten Laplacian approach with other techniques, such as the transfer matrix approach and its semiclassical analysis. The author concludes by providing a complete proof of the uniform Log-Sobolev inequality.
Publisher: World Scientific
ISBN: 9789812380982
Category : Mathematics
Languages : en
Pages : 200
Book Description
This important book explains how the technique of Witten Laplacians may be useful in statistical mechanics. It considers the problem of analyzing the decay of correlations, after presenting its origin in statistical mechanics. In addition, it compares the Witten Laplacian approach with other techniques, such as the transfer matrix approach and its semiclassical analysis. The author concludes by providing a complete proof of the uniform Log-Sobolev inequality.
Semiclassical Analysis
Author: Maciej Zworski
Publisher: American Mathematical Society
ISBN: 1470470624
Category : Mathematics
Languages : en
Pages : 431
Book Description
This book is an excellent, comprehensive introduction to semiclassical analysis. I believe it will become a standard reference for the subject. —Alejandro Uribe, University of Michigan Semiclassical analysis provides PDE techniques based on the classical-quantum (particle-wave) correspondence. These techniques include such well-known tools as geometric optics and the Wentzel–Kramers–Brillouin approximation. Examples of problems studied in this subject are high energy eigenvalue asymptotics and effective dynamics for solutions of evolution equations. From the mathematical point of view, semiclassical analysis is a branch of microlocal analysis which, broadly speaking, applies harmonic analysis and symplectic geometry to the study of linear and nonlinear PDE. The book is intended to be a graduate level text introducing readers to semiclassical and microlocal methods in PDE. It is augmented in later chapters with many specialized advanced topics which provide a link to current research literature.
Publisher: American Mathematical Society
ISBN: 1470470624
Category : Mathematics
Languages : en
Pages : 431
Book Description
This book is an excellent, comprehensive introduction to semiclassical analysis. I believe it will become a standard reference for the subject. —Alejandro Uribe, University of Michigan Semiclassical analysis provides PDE techniques based on the classical-quantum (particle-wave) correspondence. These techniques include such well-known tools as geometric optics and the Wentzel–Kramers–Brillouin approximation. Examples of problems studied in this subject are high energy eigenvalue asymptotics and effective dynamics for solutions of evolution equations. From the mathematical point of view, semiclassical analysis is a branch of microlocal analysis which, broadly speaking, applies harmonic analysis and symplectic geometry to the study of linear and nonlinear PDE. The book is intended to be a graduate level text introducing readers to semiclassical and microlocal methods in PDE. It is augmented in later chapters with many specialized advanced topics which provide a link to current research literature.
Semiclassical Analysis for Diffusions and Stochastic Processes
Author: Vassili N. Kolokoltsov
Publisher: Springer
ISBN: 3540465871
Category : Mathematics
Languages : en
Pages : 360
Book Description
The monograph is devoted mainly to the analytical study of the differential, pseudo-differential and stochastic evolution equations describing the transition probabilities of various Markov processes. These include (i) diffusions (in particular,degenerate diffusions), (ii) more general jump-diffusions, especially stable jump-diffusions driven by stable Lévy processes, (iii) complex stochastic Schrödinger equations which correspond to models of quantum open systems. The main results of the book concern the existence, two-sided estimates, path integral representation, and small time and semiclassical asymptotics for the Green functions (or fundamental solutions) of these equations, which represent the transition probability densities of the corresponding random process. The boundary value problem for Hamiltonian systems and some spectral asymptotics ar also discussed. Readers should have an elementary knowledge of probability, complex and functional analysis, and calculus.
Publisher: Springer
ISBN: 3540465871
Category : Mathematics
Languages : en
Pages : 360
Book Description
The monograph is devoted mainly to the analytical study of the differential, pseudo-differential and stochastic evolution equations describing the transition probabilities of various Markov processes. These include (i) diffusions (in particular,degenerate diffusions), (ii) more general jump-diffusions, especially stable jump-diffusions driven by stable Lévy processes, (iii) complex stochastic Schrödinger equations which correspond to models of quantum open systems. The main results of the book concern the existence, two-sided estimates, path integral representation, and small time and semiclassical asymptotics for the Green functions (or fundamental solutions) of these equations, which represent the transition probability densities of the corresponding random process. The boundary value problem for Hamiltonian systems and some spectral asymptotics ar also discussed. Readers should have an elementary knowledge of probability, complex and functional analysis, and calculus.
Semi-classical Analysis
Author: Victor Guillemin
Publisher:
ISBN: 9781571462763
Category : Fourier integral operators
Languages : en
Pages : 446
Book Description
Publisher:
ISBN: 9781571462763
Category : Fourier integral operators
Languages : en
Pages : 446
Book Description
Mathematical Concepts of Quantum Mechanics
Author: Stephen J. Gustafson
Publisher: Springer Science & Business Media
ISBN: 3642218660
Category : Mathematics
Languages : en
Pages : 380
Book Description
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.
Publisher: Springer Science & Business Media
ISBN: 3642218660
Category : Mathematics
Languages : en
Pages : 380
Book Description
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.
Semi-classical Analysis For Nonlinear Schrodinger Equations: Wkb Analysis, Focal Points, Coherent States (Second Edition)
Author: Remi Carles
Publisher: World Scientific
ISBN: 9811227926
Category : Mathematics
Languages : en
Pages : 367
Book Description
The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent.Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrödinger equations in negative order Sobolev spaces.The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.
Publisher: World Scientific
ISBN: 9811227926
Category : Mathematics
Languages : en
Pages : 367
Book Description
The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent.Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrödinger equations in negative order Sobolev spaces.The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.
Spectral Asymptotics in the Semi-Classical Limit
Author: Mouez Dimassi
Publisher: Cambridge University Press
ISBN: 0521665442
Category : Mathematics
Languages : en
Pages : 243
Book Description
This book presents the basic methods and applications in semiclassical approximation in the light of developments.
Publisher: Cambridge University Press
ISBN: 0521665442
Category : Mathematics
Languages : en
Pages : 243
Book Description
This book presents the basic methods and applications in semiclassical approximation in the light of developments.
Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation (AM-154)
Author: Spyridon Kamvissis
Publisher: Princeton University Press
ISBN: 1400837189
Category : Mathematics
Languages : en
Pages : 280
Book Description
This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing the semiclassical behavior. In doing so they also aim to explain the observed gradient catastrophe for the underlying nonlinear elliptic partial differential equations, and to set forth a detailed, pointwise asymptotic description of the violent oscillations that emerge following the gradient catastrophe. To achieve this, the authors have extended the reach of two powerful analytical techniques that have arisen through the asymptotic analysis of integrable systems: the Lax-Levermore-Venakides variational approach to singular limits in integrable systems, and Deift and Zhou's nonlinear Steepest-Descent/Stationary Phase method for the analysis of Riemann-Hilbert problems. In particular, they introduce a systematic procedure for handling certain Riemann-Hilbert problems with poles accumulating on curves in the plane. This book, which includes an appendix on the use of the Fredholm theory for Riemann-Hilbert problems in the Hölder class, is intended for researchers and graduate students of applied mathematics and analysis, especially those with an interest in integrable systems, nonlinear waves, or complex analysis.
Publisher: Princeton University Press
ISBN: 1400837189
Category : Mathematics
Languages : en
Pages : 280
Book Description
This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing the semiclassical behavior. In doing so they also aim to explain the observed gradient catastrophe for the underlying nonlinear elliptic partial differential equations, and to set forth a detailed, pointwise asymptotic description of the violent oscillations that emerge following the gradient catastrophe. To achieve this, the authors have extended the reach of two powerful analytical techniques that have arisen through the asymptotic analysis of integrable systems: the Lax-Levermore-Venakides variational approach to singular limits in integrable systems, and Deift and Zhou's nonlinear Steepest-Descent/Stationary Phase method for the analysis of Riemann-Hilbert problems. In particular, they introduce a systematic procedure for handling certain Riemann-Hilbert problems with poles accumulating on curves in the plane. This book, which includes an appendix on the use of the Fredholm theory for Riemann-Hilbert problems in the Hölder class, is intended for researchers and graduate students of applied mathematics and analysis, especially those with an interest in integrable systems, nonlinear waves, or complex analysis.