SELF-CONSISTENT, INTEGRATED, ADVANCED TOKAMAK OPERATION ON DIII-D.

SELF-CONSISTENT, INTEGRATED, ADVANCED TOKAMAK OPERATION ON DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Recent experiments on DIII-D have demonstrated the ability to sustain plasma conditions that integrate and sustain the key ingredients of Advanced Tokamak (AT) operation: high[beta] with q[sub min]” 1, good energy confinement, and high current drive efficiency. Utilizing off-axis ([rho]= 0.4) electron cyclotron current drive (ECCD) to modify the current density profile in a plasma operating near the no-wall ideal stability limit with q[sub min]> 2.0, plasmas with[beta]= 2.9% and 90% of the plasma current driven non-inductively have been sustained for nearly 2 s (limited only by the duration of the ECCD pulse). Separate experiments have demonstrated the ability to sustain a steady current density profile using ECCD for periods as long as 1 s with[beta]= 3.3% and> 90% of the current driven non-inductively.

SELF-CONSISTENT, INTEGRATED, ADVANCED TOKAMAK OPERATION ON DIII-D.

SELF-CONSISTENT, INTEGRATED, ADVANCED TOKAMAK OPERATION ON DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Recent experiments on DIII-D have demonstrated the ability to sustain plasma conditions that integrate and sustain the key ingredients of Advanced Tokamak (AT) operation: high[beta] with q[sub min]” 1, good energy confinement, and high current drive efficiency. Utilizing off-axis ([rho]= 0.4) electron cyclotron current drive (ECCD) to modify the current density profile in a plasma operating near the no-wall ideal stability limit with q[sub min]> 2.0, plasmas with[beta]= 2.9% and 90% of the plasma current driven non-inductively have been sustained for nearly 2 s (limited only by the duration of the ECCD pulse). Separate experiments have demonstrated the ability to sustain a steady current density profile using ECCD for periods as long as 1 s with[beta]= 3.3% and> 90% of the current driven non-inductively.

ADVANCED TOKAMAK PROFILE EVOLUTION IN DIII-D.

ADVANCED TOKAMAK PROFILE EVOLUTION IN DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Using off-axis electron cyclotron current drive (ECCD), self-consistent integrated advanced tokamak operation has been demonstrated on DIII-D, combining high[beta] (>3%) at high q(q[sub min]> 2.0) with good energy confinement (H[sub 89][approx] 2.5) and high noninductive current fraction (f[sub BS][approx] 55%, f[sub NI][approx] 90%). Modification of the current profile by ECCD led to internal transport barrier formation even in the presence of type I edge localized modes. Improvements were observed in all transport channels, and increased peaking of profiles led to higher bootstrap current in the core. Separate experiments have shown the ability to maintain a nearly steady-state current profile for up to 1 s with q[sub min]> 1.5. Modeling indicates that this favorable current profile can be maintained indefinitely at a higher[beta][sub N] using tools available to the near-term DIII-D program. Modeling and simulation have become essential tools for the experimental program in interpreting the data and developing detail plans for new experiments.

ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM.

ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description
A271 ADVANCED TOKAMAK OPERATION USING THE DIII-D PLASMA CONTROL SYSTEM. The principal focus of experimental operations in the DIII-D tokamak is the advanced tokamak (AT) regime to achieve, which requires highly integrated and flexible plasma control. In a high performance advanced tokamak, accurate regulation of the plasma boundary, internal profiles, pumping, fueling, and heating must be well coordinated with MHD control action to stabilize such instabilities as tearing modes and resistive wall modes. Sophisticated monitors of the operational regime must provide detection of off-normal conditions and trigger appropriate safety responses with acceptable levels of reliability. Many of these capabilities are presently implemented in the DIII-D plasma control system (PCS), and are now in frequent or routine operational use. The present work describes recent development, implementation, and operational experience with AT regime control elements for equilibrium control, MHD suppression, and off-normal event detection and response.

Advanced Tokamak Research on the DIII-D Tokamak

Advanced Tokamak Research on the DIII-D Tokamak PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 19

Get Book Here

Book Description


HIGH PERFORMANCE ADVANCED TOKAMAK REGIMES FOR NEXT-STEP EXPERIMENTS.

HIGH PERFORMANCE ADVANCED TOKAMAK REGIMES FOR NEXT-STEP EXPERIMENTS. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
OAK-B135 Advanced Tokamak (AT) research in DIII-D seeks to provide a scientific basis for steady-state high performance operation in future devices. These regimes require high toroidal beta to maximize fusion output and poloidal beta to maximize the self-driven bootstrap current. Achieving these conditions requires integrated, simultaneous control of the current and pressure profiles, and active magnetohydrodynamic (MHD) stability control. The building blocks for AT operation are in hand. Resistive wall mode stabilization via plasma rotation and active feedback with non-axisymmetric coils allows routine operation above the no-wall beta limit. Neoclassical tearing modes are stabilized by active feedback control of localized electron cyclotron current drive (ECCD). Plasma shaping and profile control provide further improvements. Under these conditions, bootstrap supplies most of the current. Steady-state operation requires replacing the remaining Ohmic current, mostly located near the half-radius, with noninductive external sources. In DIII-D this current is provided by ECCD, and nearly stationary AT discharges have been sustained with little remaining Ohmic current. Fast wave current drive is being developed to control the central magnetic shear. Density control, with divertor cryopumps, of AT discharges with edge localized moding (ELMing) H-mode edges facilitates high current drive efficiency at reactor relevant collisionalities. A sophisticated plasma control system allows integrated control of these elements. Close coupling between modeling and experiment is key to understanding the separate elements, their complex nonlinear interactions, and their integration into self-consistent high performance scenarios. Progress on this development, and its implications for next-step devices, will be illustrated by results of recent experiment and simulation efforts.

Overview of Recent Experimental Results from the DIII-D Advanced Tokamak Program

Overview of Recent Experimental Results from the DIII-D Advanced Tokamak Program PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 39

Get Book Here

Book Description
OAK A271 OVERVIEW OF RECENT EXPERIMENTAL RESULTS FROM THE DIII-D ADVANCED TOKAMAK PROGRAM. The DIII-D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, they have made significant progress in developing the building blocks needed for AT operation: (1) they have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; (2) using this rotational stabilization, they have achieved [beta]{sub N}H9 e"10 for 4 [tau]{sub E} limited by the neoclassical tearing mode; (3) using real-time feedback of the electron cyclotron current drive (ECCD) location, they have stabilized the (m, n) = (3,2) neoclassical tearing mode and then increased [beta]{sub T} by 60%; (4) they have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments; (5) they have made the first integrated AT demonstration discharges with current profile control using ECCD; (6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and (7) they have demonstrated stationary tokamak operation for 6.5 s (36 [tau]{sub E}) at the same fusion gain parameter of [beta]{sub N}H9/q952 H"0.4 as ITER but at much higher q95 = 4.2. The authors have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) they have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time (3.8 s or 25 [tau]{sub E}) with constant density and constant radiated power; (2) they have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet injection of noble gases; (3) they have found that the heat and particle fluxes to the inner strike points of balanced, double-null divertors are much smaller than to the outer strike points. They have made detailed investigations of the edge pedestal and SOL: (1) Atomic physics and plasma physics both play significant roles in setting the width of the edge density barrier in H-mode; (2) ELM heat flux conducted to the divertor decreases as density increases; (3) Intermittent, bursty transport contributes to cross field particle transport in the scrape-off layer (SOL) of H-mode and, especially, L-mode plasmas.

Status of Advanced Tokamak Scenario Modeling with Off-Axis Electron Cyclotron Current Drive in DIII-D.

Status of Advanced Tokamak Scenario Modeling with Off-Axis Electron Cyclotron Current Drive in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The status of modeling work focused on developing the advanced tokamak scenarios in DIII-D is discussed. The objectives of the work are two-fold: (1) to develop AT scenarios with ECCD using time-dependent transport simulations, coupled with heating and current drive models, consistent with MHD equilibrium and stability; and (2) to use time-dependent simulations to help plan experiments and to understand the key physics involved. Time-dependent simulations based on transport coefficients derived from experimentally achieved target discharges are used to perform AT scenario modeling. The modeling indicates off-axis ECCD with approximately 3 MW absorbed power can maintain high-performance discharges with q[sub min]> 1 for 5 to 10 s. The resultant equilibria are calculated to be stable to n= 1 pressure driven modes. The plasma is well into the second stability regime for high-n ballooning modes over a large part of the plasma volume. The role of continuous localized ECCD is studied for stabilizing m/n= 2/1 tearing modes. The progress towards validating current drive and transport models, consistent with experimental results, and developing self-consistent, integrated high performance AT scenarios is discussed.

Shape Optimization for DIII-D Advanced Tokamak Plasmas

Shape Optimization for DIII-D Advanced Tokamak Plasmas PDF Author: C. E. Kessel
Publisher:
ISBN:
Category : Magnetohydrodynamic instabilities
Languages : en
Pages : 4

Get Book Here

Book Description


CONTROL OF MHD STABILITY IN DIII-D ADVANCED TOKAMAK DISCHARGES.

CONTROL OF MHD STABILITY IN DIII-D ADVANCED TOKAMAK DISCHARGES. PDF Author: M. MURAKAMI
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description


Current Profile Modeling to Extend the Duration of High Performance Advanced Tokamak Modes in DIII-D.

Current Profile Modeling to Extend the Duration of High Performance Advanced Tokamak Modes in DIII-D. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
In DIII-D, as in a number of tokamaks, high performance is obtained with various optimized magnetic shear configurations that exhibit internal transport barriers. Negative central shear (NCS) discharges are created transiently during the current ramp-up by auxiliary heating and current drive from neutral beam injection. Both q{sub min} and the radius at which it occurs, [rho]{sub qmin}, decrease with time as the Ohmic current diffuses inward. The q-profiles calculated using EFIT with external magnetic and Motional Stark Effect (MSE) measurements as constraints are comparable to those calculated with the Corsica code, a time-dependent, 2D equilibrium and 1D transport modeling code. Corsica is used to predict the temporal evolution of the current density from a combination of measured profiles, transport models and neoclassical resistivity. Using these predictive capabilities, the authors are exploring methods for increasing the duration and [rho]{sub qmin} of the NCS configuration by local control of the current density profile with simulations of the possible control available from the electron cyclotron heating and current drive system currently being upgraded on DIII-D. Their intention is not to do a detailed investigation of transport models but rather to provide a reasonable model of heat conductivity to be able to simulate effects of electron cyclotron heating (ECH) and current drive (ECCD) on confinement in NCS configurations. The authors adjust free parameters (c, c1 and c2) in the model to obtain a reasonable representation of the temporal evolution of electron and ion temperature profiles consistent with those measured in selected DIII-D shots. In all cases, they use the measured density profiles rather than self-consistently solve for particle sources and particle transport at this time.