Author: R. Mennicken
Publisher: Elsevier
ISBN: 0080537731
Category : Mathematics
Languages : en
Pages : 519
Book Description
This monograph provides a comprehensive treatment of expansion theorems for regular systems of first order differential equations and n-th order ordinary differential equations.In 10 chapters and one appendix, it provides a comprehensive treatment from abstract foundations to applications in physics and engineering. The focus is on non-self-adjoint problems. Bounded operators are associated to these problems, and Chapter 1 provides an in depth investigation of eigenfunctions and associated functions for bounded Fredholm valued operators in Banach spaces. Since every n-th order differential equation is equivalentto a first order system, the main techniques are developed for systems. Asymptotic fundamentalsystems are derived for a large class of systems of differential equations. Together with boundaryconditions, which may depend polynomially on the eigenvalue parameter, this leads to the definition of Birkhoff and Stone regular eigenvalue problems. An effort is made to make the conditions relatively easy verifiable; this is illustrated with several applications in chapter 10.The contour integral method and estimates of the resolvent are used to prove expansion theorems.For Stone regular problems, not all functions are expandable, and again relatively easy verifiableconditions are given, in terms of auxiliary boundary conditions, for functions to be expandable.Chapter 10 deals exclusively with applications; in nine sections, various concrete problems such asthe Orr-Sommerfeld equation, control of multiple beams, and an example from meteorology are investigated.Key features:• Expansion Theorems for Ordinary Differential Equations • Discusses Applications to Problems from Physics and Engineering • Thorough Investigation of Asymptotic Fundamental Matrices and Systems • Provides a Comprehensive Treatment • Uses the Contour Integral Method • Represents the Problems as Bounded Operators • Investigates Canonical Systems of Eigen- and Associated Vectors for Operator Functions
Non-Self-Adjoint Boundary Eigenvalue Problems
Author: R. Mennicken
Publisher: Elsevier
ISBN: 0080537731
Category : Mathematics
Languages : en
Pages : 519
Book Description
This monograph provides a comprehensive treatment of expansion theorems for regular systems of first order differential equations and n-th order ordinary differential equations.In 10 chapters and one appendix, it provides a comprehensive treatment from abstract foundations to applications in physics and engineering. The focus is on non-self-adjoint problems. Bounded operators are associated to these problems, and Chapter 1 provides an in depth investigation of eigenfunctions and associated functions for bounded Fredholm valued operators in Banach spaces. Since every n-th order differential equation is equivalentto a first order system, the main techniques are developed for systems. Asymptotic fundamentalsystems are derived for a large class of systems of differential equations. Together with boundaryconditions, which may depend polynomially on the eigenvalue parameter, this leads to the definition of Birkhoff and Stone regular eigenvalue problems. An effort is made to make the conditions relatively easy verifiable; this is illustrated with several applications in chapter 10.The contour integral method and estimates of the resolvent are used to prove expansion theorems.For Stone regular problems, not all functions are expandable, and again relatively easy verifiableconditions are given, in terms of auxiliary boundary conditions, for functions to be expandable.Chapter 10 deals exclusively with applications; in nine sections, various concrete problems such asthe Orr-Sommerfeld equation, control of multiple beams, and an example from meteorology are investigated.Key features:• Expansion Theorems for Ordinary Differential Equations • Discusses Applications to Problems from Physics and Engineering • Thorough Investigation of Asymptotic Fundamental Matrices and Systems • Provides a Comprehensive Treatment • Uses the Contour Integral Method • Represents the Problems as Bounded Operators • Investigates Canonical Systems of Eigen- and Associated Vectors for Operator Functions
Publisher: Elsevier
ISBN: 0080537731
Category : Mathematics
Languages : en
Pages : 519
Book Description
This monograph provides a comprehensive treatment of expansion theorems for regular systems of first order differential equations and n-th order ordinary differential equations.In 10 chapters and one appendix, it provides a comprehensive treatment from abstract foundations to applications in physics and engineering. The focus is on non-self-adjoint problems. Bounded operators are associated to these problems, and Chapter 1 provides an in depth investigation of eigenfunctions and associated functions for bounded Fredholm valued operators in Banach spaces. Since every n-th order differential equation is equivalentto a first order system, the main techniques are developed for systems. Asymptotic fundamentalsystems are derived for a large class of systems of differential equations. Together with boundaryconditions, which may depend polynomially on the eigenvalue parameter, this leads to the definition of Birkhoff and Stone regular eigenvalue problems. An effort is made to make the conditions relatively easy verifiable; this is illustrated with several applications in chapter 10.The contour integral method and estimates of the resolvent are used to prove expansion theorems.For Stone regular problems, not all functions are expandable, and again relatively easy verifiableconditions are given, in terms of auxiliary boundary conditions, for functions to be expandable.Chapter 10 deals exclusively with applications; in nine sections, various concrete problems such asthe Orr-Sommerfeld equation, control of multiple beams, and an example from meteorology are investigated.Key features:• Expansion Theorems for Ordinary Differential Equations • Discusses Applications to Problems from Physics and Engineering • Thorough Investigation of Asymptotic Fundamental Matrices and Systems • Provides a Comprehensive Treatment • Uses the Contour Integral Method • Represents the Problems as Bounded Operators • Investigates Canonical Systems of Eigen- and Associated Vectors for Operator Functions
Analytic Theory of Differential Equations
Author: P. F. Hsieh
Publisher: Springer
ISBN: 3540364544
Category : Mathematics
Languages : en
Pages : 234
Book Description
Publisher: Springer
ISBN: 3540364544
Category : Mathematics
Languages : en
Pages : 234
Book Description
Functional Analysis I
Author: Yu.I. Lyubich
Publisher: Springer Science & Business Media
ISBN: 3662028492
Category : Mathematics
Languages : en
Pages : 290
Book Description
The twentieth-century view of the analysis of functions is dominated by the study of classes of functions. This volume of the Encyclopaedia covers the origins, development and applications of linear functional analysis, explaining along the way how one is led naturally to the modern approach.
Publisher: Springer Science & Business Media
ISBN: 3662028492
Category : Mathematics
Languages : en
Pages : 290
Book Description
The twentieth-century view of the analysis of functions is dominated by the study of classes of functions. This volume of the Encyclopaedia covers the origins, development and applications of linear functional analysis, explaining along the way how one is led naturally to the modern approach.
Wavelets and Other Orthogonal Systems
Author: Gilbert G. Walter
Publisher: CRC Press
ISBN: 1482285800
Category : Mathematics
Languages : en
Pages : 391
Book Description
A bestseller in its first edition, Wavelets and Other Orthogonal Systems: Second Edition has been fully updated to reflect the recent growth and development of this field, especially in the area of multiwavelets. The authors have incorporated more examples and numerous illustrations to help clarify concepts. They have also added a considerable amount of new material, including sections addressing impulse trains, an alternate approach to periodic wavelets, and positive wavelet s. Other new discussions include irregular sampling in wavelet subspaces, hybrid wavelet sampling, interpolating multiwavelets, and several new statistics topics. With cutting-edge applications in data compression, image analysis, numerical analysis, and acoustics wavelets remain at the forefront of current research. Wavelets and Other Orthogonal Systems maintains its mathematical perspective in presenting wavelets in the same setting as other orthogonal systems, thus allowing their advantages and disadvantages to be seen more directly. Now even more student friendly, the second edition forms an outstanding text not only for graduate students in mathematics, but also for those interested in scientific and engineering applications.
Publisher: CRC Press
ISBN: 1482285800
Category : Mathematics
Languages : en
Pages : 391
Book Description
A bestseller in its first edition, Wavelets and Other Orthogonal Systems: Second Edition has been fully updated to reflect the recent growth and development of this field, especially in the area of multiwavelets. The authors have incorporated more examples and numerous illustrations to help clarify concepts. They have also added a considerable amount of new material, including sections addressing impulse trains, an alternate approach to periodic wavelets, and positive wavelet s. Other new discussions include irregular sampling in wavelet subspaces, hybrid wavelet sampling, interpolating multiwavelets, and several new statistics topics. With cutting-edge applications in data compression, image analysis, numerical analysis, and acoustics wavelets remain at the forefront of current research. Wavelets and Other Orthogonal Systems maintains its mathematical perspective in presenting wavelets in the same setting as other orthogonal systems, thus allowing their advantages and disadvantages to be seen more directly. Now even more student friendly, the second edition forms an outstanding text not only for graduate students in mathematics, but also for those interested in scientific and engineering applications.
Wavelets and Other Orthogonal Systems with Applications
Author: Gilbert G. Walter
Publisher: CRC Press
ISBN: 9780849378782
Category : Mathematics
Languages : en
Pages : 264
Book Description
This book makes accessible to both mathematicians and engineers important elements of the theory, construction, and application of orthogonal wavelets. It is integrated with more traditional orthogonal series, such as Fourier series and orthogonal polynomials. It treats the interaction of both with generalized functions (delta functions), which have played an important part in engineering theory but whose rules are often vaguely presented. Unlike most other books that are excessively technical, this text/reference presents the basic concepts and examples in a readable form. Much of the material on wavelets has not appeared previously in book form. Applications to statistics, sampling theorems, and stochastic processes are given. In particular, the close affinity between wavelets and sampling theorems is explained and developed.
Publisher: CRC Press
ISBN: 9780849378782
Category : Mathematics
Languages : en
Pages : 264
Book Description
This book makes accessible to both mathematicians and engineers important elements of the theory, construction, and application of orthogonal wavelets. It is integrated with more traditional orthogonal series, such as Fourier series and orthogonal polynomials. It treats the interaction of both with generalized functions (delta functions), which have played an important part in engineering theory but whose rules are often vaguely presented. Unlike most other books that are excessively technical, this text/reference presents the basic concepts and examples in a readable form. Much of the material on wavelets has not appeared previously in book form. Applications to statistics, sampling theorems, and stochastic processes are given. In particular, the close affinity between wavelets and sampling theorems is explained and developed.
Guaranteed Computational Methods for Self-Adjoint Differential Eigenvalue Problems
Author: Xuefeng Liu
Publisher: Springer Nature
ISBN: 9819735777
Category :
Languages : en
Pages : 139
Book Description
Publisher: Springer Nature
ISBN: 9819735777
Category :
Languages : en
Pages : 139
Book Description
Compact and Finite Rank Perturbations of Selfadjoint Operators in Krein Spaces with Applications to Boundary Eigenvalue Problems
Author: Jussi Behrndt
Publisher: Cuvillier Verlag
ISBN: 3865374352
Category :
Languages : en
Pages : 101
Book Description
Publisher: Cuvillier Verlag
ISBN: 3865374352
Category :
Languages : en
Pages : 101
Book Description
Boundary and Eigenvalue Problems in Mathematical Physics
Author: Hans Sagan
Publisher: Courier Corporation
ISBN: 0486150925
Category : Science
Languages : en
Pages : 420
Book Description
Well-known text uses a few basic concepts to solve such problems as the vibrating string, vibrating membrane, and heat conduction. Problems and solutions. 31 illustrations.
Publisher: Courier Corporation
ISBN: 0486150925
Category : Science
Languages : en
Pages : 420
Book Description
Well-known text uses a few basic concepts to solve such problems as the vibrating string, vibrating membrane, and heat conduction. Problems and solutions. 31 illustrations.
A Physicist's Introduction to Algebraic Structures
Author: Palash B. Pal
Publisher: Cambridge University Press
ISBN: 1108661394
Category : Science
Languages : en
Pages : 718
Book Description
An algebraic structure consists of a set of elements, with some rule of combining them, or some special property of selected subsets of the entire set. Many algebraic structures, such as vector space and group, come to everyday use of a modern physicist. Catering to the needs of graduate students and researchers in the field of mathematical physics and theoretical physics, this comprehensive and valuable text discusses the essential concepts of algebraic structures such as metric space, group, modular numbers, algebraic integers, field, vector space, Boolean algebra, measure space and Lebesgue integral. Important topics including finite and infinite dimensional vector spaces, finite groups and their representations, unitary groups and their representations and representations of the Lorentz group, homotopy and homology of topological spaces are covered extensively. Rich pedagogy includes various problems interspersed throughout the book for better understanding of concepts.
Publisher: Cambridge University Press
ISBN: 1108661394
Category : Science
Languages : en
Pages : 718
Book Description
An algebraic structure consists of a set of elements, with some rule of combining them, or some special property of selected subsets of the entire set. Many algebraic structures, such as vector space and group, come to everyday use of a modern physicist. Catering to the needs of graduate students and researchers in the field of mathematical physics and theoretical physics, this comprehensive and valuable text discusses the essential concepts of algebraic structures such as metric space, group, modular numbers, algebraic integers, field, vector space, Boolean algebra, measure space and Lebesgue integral. Important topics including finite and infinite dimensional vector spaces, finite groups and their representations, unitary groups and their representations and representations of the Lorentz group, homotopy and homology of topological spaces are covered extensively. Rich pedagogy includes various problems interspersed throughout the book for better understanding of concepts.
Guide To Mathematical Methods For Physicists, A: With Problems And Solutions
Author: Michela Petrini
Publisher: World Scientific Publishing Company
ISBN: 1786343460
Category : Science
Languages : en
Pages : 339
Book Description
Mathematics plays a fundamental role in the formulation of physical theories. This textbook provides a self-contained and rigorous presentation of the main mathematical tools needed in many fields of Physics, both classical and quantum. It covers topics treated in mathematics courses for final-year undergraduate and graduate physics programmes, including complex function: distributions, Fourier analysis, linear operators, Hilbert spaces and eigenvalue problems. The different topics are organised into two main parts — complex analysis and vector spaces — in order to stress how seemingly different mathematical tools, for instance the Fourier transform, eigenvalue problems or special functions, are all deeply interconnected. Also contained within each chapter are fully worked examples, problems and detailed solutions. A companion volume covering more advanced topics that enlarge and deepen those treated here is also available.
Publisher: World Scientific Publishing Company
ISBN: 1786343460
Category : Science
Languages : en
Pages : 339
Book Description
Mathematics plays a fundamental role in the formulation of physical theories. This textbook provides a self-contained and rigorous presentation of the main mathematical tools needed in many fields of Physics, both classical and quantum. It covers topics treated in mathematics courses for final-year undergraduate and graduate physics programmes, including complex function: distributions, Fourier analysis, linear operators, Hilbert spaces and eigenvalue problems. The different topics are organised into two main parts — complex analysis and vector spaces — in order to stress how seemingly different mathematical tools, for instance the Fourier transform, eigenvalue problems or special functions, are all deeply interconnected. Also contained within each chapter are fully worked examples, problems and detailed solutions. A companion volume covering more advanced topics that enlarge and deepen those treated here is also available.