Author: Haruo Sato
Publisher: Springer Science & Business Media
ISBN: 3540896236
Category : Science
Languages : en
Pages : 308
Book Description
Seismic waves – generated both by natural earthquakes and by man-made sources – have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or sperical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed.
Seismic Wave Propagation and Scattering in the Heterogenous Earth
Author: Haruo Sato
Publisher: Springer Science & Business Media
ISBN: 3540896236
Category : Science
Languages : en
Pages : 308
Book Description
Seismic waves – generated both by natural earthquakes and by man-made sources – have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or sperical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed.
Publisher: Springer Science & Business Media
ISBN: 3540896236
Category : Science
Languages : en
Pages : 308
Book Description
Seismic waves – generated both by natural earthquakes and by man-made sources – have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or sperical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed.
Fundamentals of Seismic Wave Propagation
Author: Chris Chapman
Publisher: Cambridge University Press
ISBN: 9781139451635
Category : Science
Languages : en
Pages : 646
Book Description
Fundamentals of Seismic Wave Propagation, published in 2004, presents a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics. The theory of seismic wave propagation in acoustic, elastic and anisotropic media is developed to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. This book provides a consistent and thorough development of modelling methods widely used in elastic wave propagation ranging from the whole Earth, through regional and crustal seismology, exploration seismics to borehole seismics, sonics and ultrasonics. Particular emphasis is placed on developing a consistent notation and approach throughout, which highlights similarities and allows more complicated methods and extensions to be developed without difficulty. This book is intended as a text for graduate courses in theoretical seismology, and as a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.
Publisher: Cambridge University Press
ISBN: 9781139451635
Category : Science
Languages : en
Pages : 646
Book Description
Fundamentals of Seismic Wave Propagation, published in 2004, presents a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics. The theory of seismic wave propagation in acoustic, elastic and anisotropic media is developed to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. This book provides a consistent and thorough development of modelling methods widely used in elastic wave propagation ranging from the whole Earth, through regional and crustal seismology, exploration seismics to borehole seismics, sonics and ultrasonics. Particular emphasis is placed on developing a consistent notation and approach throughout, which highlights similarities and allows more complicated methods and extensions to be developed without difficulty. This book is intended as a text for graduate courses in theoretical seismology, and as a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.
Seismic Wave Propagation in Stratified Media
Author: Brian Leslie Norman Kennett
Publisher:
ISBN: 9781921536724
Category : Electronic books
Languages : en
Pages : 288
Book Description
Seismic Wave Propagation in Stratified Media presents a systematic treatment of the interaction of seismic waves with Earth structure. The theoretical development is physically based and is closely tied to the nature of the seismograms observed across a wide range of distance scales - from a few kilometres as in shallow reflection work for geophysical prospecting, to many thousands of kilometres for major earthquakes. A unified framework is presented for all classes of seismic phenomena, for both body waves and surface waves. Since its first publication in 1983 this book has been an important resource for understanding the way in which seismic waves can be understood in terms of reflection and transmission properties of Earth models, and how complete theoretical seismograms can be calculated. The methods allow the development of specific approximations that allow concentration on different seismic arrivals and hence provide a direct tie to seismic observations.
Publisher:
ISBN: 9781921536724
Category : Electronic books
Languages : en
Pages : 288
Book Description
Seismic Wave Propagation in Stratified Media presents a systematic treatment of the interaction of seismic waves with Earth structure. The theoretical development is physically based and is closely tied to the nature of the seismograms observed across a wide range of distance scales - from a few kilometres as in shallow reflection work for geophysical prospecting, to many thousands of kilometres for major earthquakes. A unified framework is presented for all classes of seismic phenomena, for both body waves and surface waves. Since its first publication in 1983 this book has been an important resource for understanding the way in which seismic waves can be understood in terms of reflection and transmission properties of Earth models, and how complete theoretical seismograms can be calculated. The methods allow the development of specific approximations that allow concentration on different seismic arrivals and hence provide a direct tie to seismic observations.
The Seismic Wavefield: Volume 1, Introduction and Theoretical Development
Author: B. L. N. Kennett
Publisher: Cambridge University Press
ISBN: 9780521006637
Category : Science
Languages : en
Pages : 384
Book Description
This book provides a guide to understanding of seismograms for graduate students, researchers, professionals in academia and the petroleum industry.
Publisher: Cambridge University Press
ISBN: 9780521006637
Category : Science
Languages : en
Pages : 384
Book Description
This book provides a guide to understanding of seismograms for graduate students, researchers, professionals in academia and the petroleum industry.
Seismic Wave Propagation in the Earth
Author: A. Hanyga
Publisher: Elsevier
ISBN: 1483291847
Category : Science
Languages : en
Pages : 495
Book Description
This volume contains an extensive presentation of the theory, phenomenology and interpretation of seismic waves produced by natural and artificial sources. Each theoretical topic discussed in the book is presented in a self-contained and mathematically rigorous form, yet without excessive demands on the reader's mathematical background. It is the only book to include such a complete presentation of the mathematical background and modern developments of the WKBJ theory of seismic waves, and detailed discussions of its wide ranging applications. The book will therefore be useful to postgraduate students and research workers specialising in seismic wave theory, theoretical seismology, electromagnetic wave theory and other fields of wave propagation theory.
Publisher: Elsevier
ISBN: 1483291847
Category : Science
Languages : en
Pages : 495
Book Description
This volume contains an extensive presentation of the theory, phenomenology and interpretation of seismic waves produced by natural and artificial sources. Each theoretical topic discussed in the book is presented in a self-contained and mathematically rigorous form, yet without excessive demands on the reader's mathematical background. It is the only book to include such a complete presentation of the mathematical background and modern developments of the WKBJ theory of seismic waves, and detailed discussions of its wide ranging applications. The book will therefore be useful to postgraduate students and research workers specialising in seismic wave theory, theoretical seismology, electromagnetic wave theory and other fields of wave propagation theory.
Seismology and Structure of the Earth
Author: Barbara Romanowicz
Publisher: Elsevier
ISBN: 0444535756
Category : Science
Languages : en
Pages : 873
Book Description
Treatise on Geophysics: Seismology and Structure of the Earth, Volume 1, provides a comprehensive review of the state of knowledge on the Earths structure and earthquakes. It addresses various aspects of structural seismology and its applications to other fields of Earth sciences. The book is organized into four parts. The first part principally covers theoretical developments and seismic data analysis techniques from the end of the nineteenth century until the present, with the main emphasis on the development of instrumentation and its deployment. The second part reviews the status of knowledge on the structure of the Earths shallow layers, starting with a global review of the Earth's crustal structure. The third part focuses on the Earth's deep structure, divided into its main units: the upper mantle, the transition zone and upper-mantle discontinuities, the D region at the base of the mantle, and the Earth's core. The fourth part comprises two chapters which discuss constraints on Earth structure from fields other than seismology: mineral physics and geodynamics. - Self-contained volume starts with an overview of the subject then explores each topic with in depth detail - Extensive reference lists and cross references with other volumes to facilitate further research - Full-color figures and tables support the text and aid in understanding - Content suited for both the expert and non-expert
Publisher: Elsevier
ISBN: 0444535756
Category : Science
Languages : en
Pages : 873
Book Description
Treatise on Geophysics: Seismology and Structure of the Earth, Volume 1, provides a comprehensive review of the state of knowledge on the Earths structure and earthquakes. It addresses various aspects of structural seismology and its applications to other fields of Earth sciences. The book is organized into four parts. The first part principally covers theoretical developments and seismic data analysis techniques from the end of the nineteenth century until the present, with the main emphasis on the development of instrumentation and its deployment. The second part reviews the status of knowledge on the structure of the Earths shallow layers, starting with a global review of the Earth's crustal structure. The third part focuses on the Earth's deep structure, divided into its main units: the upper mantle, the transition zone and upper-mantle discontinuities, the D region at the base of the mantle, and the Earth's core. The fourth part comprises two chapters which discuss constraints on Earth structure from fields other than seismology: mineral physics and geodynamics. - Self-contained volume starts with an overview of the subject then explores each topic with in depth detail - Extensive reference lists and cross references with other volumes to facilitate further research - Full-color figures and tables support the text and aid in understanding - Content suited for both the expert and non-expert
Seismic Anisotropy in the Earth
Author: V. Babuska
Publisher: Springer Science & Business Media
ISBN: 9401136009
Category : Science
Languages : en
Pages : 232
Book Description
Publisher: Springer Science & Business Media
ISBN: 9401136009
Category : Science
Languages : en
Pages : 232
Book Description
Mantle Convection and Surface Expressions
Author: Hauke Marquardt
Publisher: John Wiley & Sons
ISBN: 1119528615
Category : Science
Languages : en
Pages : 32
Book Description
A multidisciplinary perspective on the dynamic processes occurring in Earth's mantle The convective motion of material in Earth's mantle, powered by heat from the deep interior of our planet, drives plate tectonics at the surface, generating earthquakes and volcanic activity. It shapes our familiar surface landscapes, and also stabilizes the oceans and atmosphere on geologic timescales. Mantle Convection and Surface Expressions brings together perspectives from observational geophysics, numerical modelling, geochemistry, and mineral physics to build a holistic picture of the deep Earth. It explores the dynamic processes occurring in the mantle as well as the associated heat and material cycles. Volume highlights include: Perspectives from different scientific disciplines with an emphasis on exploring synergies Current state of the mantle, its physical properties, compositional structure, and dynamic evolution Transport of heat and material through the mantle as constrained by geophysical observations, geochemical data and geodynamic model predictions Surface expressions of mantle dynamics and its control on planetary evolution and habitability The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Author.
Publisher: John Wiley & Sons
ISBN: 1119528615
Category : Science
Languages : en
Pages : 32
Book Description
A multidisciplinary perspective on the dynamic processes occurring in Earth's mantle The convective motion of material in Earth's mantle, powered by heat from the deep interior of our planet, drives plate tectonics at the surface, generating earthquakes and volcanic activity. It shapes our familiar surface landscapes, and also stabilizes the oceans and atmosphere on geologic timescales. Mantle Convection and Surface Expressions brings together perspectives from observational geophysics, numerical modelling, geochemistry, and mineral physics to build a holistic picture of the deep Earth. It explores the dynamic processes occurring in the mantle as well as the associated heat and material cycles. Volume highlights include: Perspectives from different scientific disciplines with an emphasis on exploring synergies Current state of the mantle, its physical properties, compositional structure, and dynamic evolution Transport of heat and material through the mantle as constrained by geophysical observations, geochemical data and geodynamic model predictions Surface expressions of mantle dynamics and its control on planetary evolution and habitability The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the Author.
Numerical Modeling of Seismic Wave Propagation
Author: Johan O. A. Robertsson
Publisher: SEG Books
ISBN: 1560802901
Category : Nature
Languages : en
Pages : 115
Book Description
The decades following SEG's 1990 volume on numerical modeling showed a step change in the application and use of full wave equation modeling methods enabled by the increase in computational power. Full waveform inversion, reverse time migration, and 3D elastic finite-difference synthetic data generation are examples. A searchable CD is included.
Publisher: SEG Books
ISBN: 1560802901
Category : Nature
Languages : en
Pages : 115
Book Description
The decades following SEG's 1990 volume on numerical modeling showed a step change in the application and use of full wave equation modeling methods enabled by the increase in computational power. Full waveform inversion, reverse time migration, and 3D elastic finite-difference synthetic data generation are examples. A searchable CD is included.
Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition
Author: Haruo Sato
Publisher: Springer Science & Business Media
ISBN: 3642230288
Category : Science
Languages : en
Pages : 505
Book Description
Seismic waves - generated both by natural earthquakes and by man-made sources - have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or spherical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed. The second edition especially includes new observational facts such as the spatial variation of medium inhomogeneities and the temporal change in scattering characteristics and recent theoretical developments in the envelope synthesis in random media for the last ten years. Mathematics is thoroughly rewritten for improving the readability. Written for advanced undergraduates or beginning graduate students of geophysics or planetary sciences, this book should also be of interest to civil engineers, seismologists, acoustical engineers, and others interested in wave propagation through inhomogeneous elastic media.
Publisher: Springer Science & Business Media
ISBN: 3642230288
Category : Science
Languages : en
Pages : 505
Book Description
Seismic waves - generated both by natural earthquakes and by man-made sources - have produced an enormous amount of information about the Earth's interior. In classical seismology, the Earth is modeled as a sequence of uniform horizontal layers (or spherical shells) having different elastic properties and one determines these properties from travel times and dispersion of seismic waves. The Earth, however, is not made of horizontally uniform layers, and classic seismic methods can take large-scale inhomogeneities into account. Smaller-scale irregularities, on the other hand, require other methods. Observations of continuous wave trains that follow classic direct S waves, known as coda waves, have shown that there are heterogeneities of random size scattered randomly throughout the layers of the classic seismic model. This book focuses on recent developments in the area of seismic wave propagation and scattering through the randomly heterogeneous structure of the Earth, with emphasis on the lithosphere. The presentation combines information from many sources to present a coherent introduction to the theory of scattering in acoustic and elastic materials and includes analyses of observations using the theoretical methods developed. The second edition especially includes new observational facts such as the spatial variation of medium inhomogeneities and the temporal change in scattering characteristics and recent theoretical developments in the envelope synthesis in random media for the last ten years. Mathematics is thoroughly rewritten for improving the readability. Written for advanced undergraduates or beginning graduate students of geophysics or planetary sciences, this book should also be of interest to civil engineers, seismologists, acoustical engineers, and others interested in wave propagation through inhomogeneous elastic media.