Author: Miriam Sherin
Publisher: Routledge
ISBN: 1136838260
Category : Education
Languages : en
Pages : 280
Book Description
This is the first book to examine research on mathematics teacher noticing---how teachers pay attention to and make sense of what happens in the complexity of instructional situations.
Mathematics Teacher Noticing
Author: Miriam Sherin
Publisher: Routledge
ISBN: 1136838260
Category : Education
Languages : en
Pages : 280
Book Description
This is the first book to examine research on mathematics teacher noticing---how teachers pay attention to and make sense of what happens in the complexity of instructional situations.
Publisher: Routledge
ISBN: 1136838260
Category : Education
Languages : en
Pages : 280
Book Description
This is the first book to examine research on mathematics teacher noticing---how teachers pay attention to and make sense of what happens in the complexity of instructional situations.
Looking at History Through Mathematics
Author: Nicolas Rashevsky
Publisher: MIT Press (MA)
ISBN:
Category : Mathematics
Languages : en
Pages : 232
Book Description
Publisher: MIT Press (MA)
ISBN:
Category : Mathematics
Languages : en
Pages : 232
Book Description
Teacher Noticing: Bridging and Broadening Perspectives, Contexts, and Frameworks
Author: Edna O. Schack
Publisher: Springer
ISBN: 3319467530
Category : Education
Languages : en
Pages : 537
Book Description
This book reflects on the continuing development of teacher noticing through an exploration of the latest research. The authors and editors seek to clarify the construct of teacher noticing and its related branches and respond to challenges brought forth in earlier research. The authors also investigate teacher noticing in multiple contexts and frameworks, including mathematics, science, international venues, and various age groups.
Publisher: Springer
ISBN: 3319467530
Category : Education
Languages : en
Pages : 537
Book Description
This book reflects on the continuing development of teacher noticing through an exploration of the latest research. The authors and editors seek to clarify the construct of teacher noticing and its related branches and respond to challenges brought forth in earlier research. The authors also investigate teacher noticing in multiple contexts and frameworks, including mathematics, science, international venues, and various age groups.
Problem-Solving Through Problems
Author: Loren C. Larson
Publisher: Springer Science & Business Media
ISBN: 1461254981
Category : Mathematics
Languages : en
Pages : 322
Book Description
This is a practical anthology of some of the best elementary problems in different branches of mathematics. Arranged by subject, the problems highlight the most common problem-solving techniques encountered in undergraduate mathematics. This book teaches the important principles and broad strategies for coping with the experience of solving problems. It has been found very helpful for students preparing for the Putnam exam.
Publisher: Springer Science & Business Media
ISBN: 1461254981
Category : Mathematics
Languages : en
Pages : 322
Book Description
This is a practical anthology of some of the best elementary problems in different branches of mathematics. Arranged by subject, the problems highlight the most common problem-solving techniques encountered in undergraduate mathematics. This book teaches the important principles and broad strategies for coping with the experience of solving problems. It has been found very helpful for students preparing for the Putnam exam.
Journey through Mathematics
Author: Enrique A. González-Velasco
Publisher: Springer Science & Business Media
ISBN: 0387921540
Category : Mathematics
Languages : en
Pages : 479
Book Description
This book offers an accessible and in-depth look at some of the most important episodes of two thousand years of mathematical history. Beginning with trigonometry and moving on through logarithms, complex numbers, infinite series, and calculus, this book profiles some of the lesser known but crucial contributors to modern day mathematics. It is unique in its use of primary sources as well as its accessibility; a knowledge of first-year calculus is the only prerequisite. But undergraduate and graduate students alike will appreciate this glimpse into the fascinating process of mathematical creation. The history of math is an intercontinental journey, and this book showcases brilliant mathematicians from Greece, Egypt, and India, as well as Europe and the Islamic world. Several of the primary sources have never before been translated into English. Their interpretation is thorough and readable, and offers an excellent background for teachers of high school mathematics as well as anyone interested in the history of math.
Publisher: Springer Science & Business Media
ISBN: 0387921540
Category : Mathematics
Languages : en
Pages : 479
Book Description
This book offers an accessible and in-depth look at some of the most important episodes of two thousand years of mathematical history. Beginning with trigonometry and moving on through logarithms, complex numbers, infinite series, and calculus, this book profiles some of the lesser known but crucial contributors to modern day mathematics. It is unique in its use of primary sources as well as its accessibility; a knowledge of first-year calculus is the only prerequisite. But undergraduate and graduate students alike will appreciate this glimpse into the fascinating process of mathematical creation. The history of math is an intercontinental journey, and this book showcases brilliant mathematicians from Greece, Egypt, and India, as well as Europe and the Islamic world. Several of the primary sources have never before been translated into English. Their interpretation is thorough and readable, and offers an excellent background for teachers of high school mathematics as well as anyone interested in the history of math.
Math through the Ages: A Gentle History for Teachers and Others Expanded Second Edition
Author: William P. Berlinghoff
Publisher: American Mathematical Soc.
ISBN: 147046456X
Category : Education
Languages : en
Pages : 331
Book Description
Where did math come from? Who thought up all those algebra symbols, and why? What is the story behind π π? … negative numbers? … the metric system? … quadratic equations? … sine and cosine? … logs? The 30 independent historical sketches in Math through the Ages answer these questions and many others in an informal, easygoing style that is accessible to teachers, students, and anyone who is curious about the history of mathematical ideas. Each sketch includes Questions and Projects to help you learn more about its topic and to see how the main ideas fit into the bigger picture of history. The 30 short stories are preceded by a 58-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. “What to Read Next” and reading suggestions after each sketch provide starting points for readers who want to learn more. This book is ideal for a broad spectrum of audiences, including students in history of mathematics courses at the late high school or early college level, pre-service and in-service teachers, and anyone who just wants to know a little more about the origins of mathematics.
Publisher: American Mathematical Soc.
ISBN: 147046456X
Category : Education
Languages : en
Pages : 331
Book Description
Where did math come from? Who thought up all those algebra symbols, and why? What is the story behind π π? … negative numbers? … the metric system? … quadratic equations? … sine and cosine? … logs? The 30 independent historical sketches in Math through the Ages answer these questions and many others in an informal, easygoing style that is accessible to teachers, students, and anyone who is curious about the history of mathematical ideas. Each sketch includes Questions and Projects to help you learn more about its topic and to see how the main ideas fit into the bigger picture of history. The 30 short stories are preceded by a 58-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. “What to Read Next” and reading suggestions after each sketch provide starting points for readers who want to learn more. This book is ideal for a broad spectrum of audiences, including students in history of mathematics courses at the late high school or early college level, pre-service and in-service teachers, and anyone who just wants to know a little more about the origins of mathematics.
Seeing Through Mathematics; Teaching Guide
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 324
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 324
Book Description
Mathematical Vistas
Author: Peter Hilton
Publisher: Springer Science & Business Media
ISBN: 1475736819
Category : Mathematics
Languages : en
Pages : 344
Book Description
This book collects nine related mathematical essays which will intrigue and inform. From the reviews: "The authors put their writing where their talents are, and students get to see just how alive mathematics is...there is much to commend the book. It contains plenty of interesting mathematics, often going in unusual directions. I like the diagrams; the authors have chosen mathematics that involves especially pretty ones." --THE MATHEMATICAL ASSOCIATION OF AMERICA
Publisher: Springer Science & Business Media
ISBN: 1475736819
Category : Mathematics
Languages : en
Pages : 344
Book Description
This book collects nine related mathematical essays which will intrigue and inform. From the reviews: "The authors put their writing where their talents are, and students get to see just how alive mathematics is...there is much to commend the book. It contains plenty of interesting mathematics, often going in unusual directions. I like the diagrams; the authors have chosen mathematics that involves especially pretty ones." --THE MATHEMATICAL ASSOCIATION OF AMERICA
All the Mathematics You Missed
Author: Thomas A. Garrity
Publisher: 清华大学出版社有限公司
ISBN: 9787302090854
Category : Mathematics
Languages : en
Pages : 380
Book Description
Publisher: 清华大学出版社有限公司
ISBN: 9787302090854
Category : Mathematics
Languages : en
Pages : 380
Book Description
Visible Learning for Mathematics, Grades K-12
Author: John Hattie
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 209
Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 209
Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.