Modern Statistics with R

Modern Statistics with R PDF Author: Måns Thulin
Publisher: CRC Press
ISBN: 9781032512440
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Modern Statistics with R

Modern Statistics with R PDF Author: Måns Thulin
Publisher: CRC Press
ISBN: 9781032512440
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Australian National Bibliography

Australian National Bibliography PDF Author:
Publisher:
ISBN:
Category : Australia
Languages : en
Pages : 1676

Get Book Here

Book Description


Regression with Dummy Variables

Regression with Dummy Variables PDF Author: Melissa A. Hardy
Publisher: SAGE
ISBN: 9780803951280
Category : Mathematics
Languages : en
Pages : 100

Get Book Here

Book Description
It is often necessary for social scientists to study differences in groups, such as gender or race differences in attitudes, buying behavior, or socioeconomic characteristics. When the researcher seeks to estimate group differences through the use of independent variables that are qualitative, dummy variables allow the researcher to represent information about group membership in quantitative terms without imposing unrealistic measurement assumptions on the categorical variables. Beginning with the simplest model, Hardy probes the use of dummy variable regression in increasingly complex specifications, exploring issues such as: interaction, heteroscedasticity, multiple comparisons and significance testing, the use of effects or contrast coding, testing for curvilinearity, and estimating a piecewise linear regression.

Econometrics: Methods and Applications

Econometrics: Methods and Applications PDF Author:
Publisher: Cybellium
ISBN: 1836795556
Category :
Languages : en
Pages : 260

Get Book Here

Book Description
Welcome to the forefront of knowledge with Cybellium, your trusted partner in mastering the cutting-edge fields of IT, Artificial Intelligence, Cyber Security, Business, Economics and Science. Designed for professionals, students, and enthusiasts alike, our comprehensive books empower you to stay ahead in a rapidly evolving digital world. * Expert Insights: Our books provide deep, actionable insights that bridge the gap between theory and practical application. * Up-to-Date Content: Stay current with the latest advancements, trends, and best practices in IT, Al, Cybersecurity, Business, Economics and Science. Each guide is regularly updated to reflect the newest developments and challenges. * Comprehensive Coverage: Whether you're a beginner or an advanced learner, Cybellium books cover a wide range of topics, from foundational principles to specialized knowledge, tailored to your level of expertise. Become part of a global network of learners and professionals who trust Cybellium to guide their educational journey. www.cybellium.com

Regression Analysis

Regression Analysis PDF Author: Frost
Publisher: Statistics by Jim Publishing
ISBN:
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
BONUS! Hardcover edition contains a 42-page bonus chapter! Other Multivariate Methods Learn regression analysis at a deeper level with guidance written in everyday language! Intuitively understand regression analysis by focusing on concepts and graphs rather than equations. Learn practical tips for modeling your data and interpreting the results. Feel confident that you're analyzing your data properly and able to trust your results. Know that you can detect and correct problems that arise. Progress from a beginner to a skilled practitioner ready for real-world applications! After an overview of how regression works and why to use it, the book covers a range of topics, including specifying and assessing models, practical applications, types of effects, statistical significance, predictions, and an array of problem-solving techniques. Contains practical and analytical guidance. Select the correct type of regression analysis. Specify the best model and assess how well it fits the data. Interpret the results. Understand main effects, interaction effects, and modeling curvature. Use polynomials, data transformations, and weighted least squares. Generate predictions and evaluate their precision. Check the assumptions and resolve issues. Identify and manage unusual observations. Examples of many regression models and scenarios. Access free downloadable datasets so you can work the examples yourself.

Essentials of Econometrics

Essentials of Econometrics PDF Author: Damodar N. Gujarati
Publisher: SAGE Publications
ISBN: 1071850423
Category : Business & Economics
Languages : en
Pages : 633

Get Book Here

Book Description
Logically organized and accessible, this updated Fifth Edition of Gujarati′s classic text provides students with an overview of the basics of econometric theory from ordinal logistic regression to time series.

Teach Yourself Econometric Data Analysis with EViews

Teach Yourself Econometric Data Analysis with EViews PDF Author: Chukwuemeka Tiptop Okoro
Publisher:
ISBN:
Category :
Languages : en
Pages : 250

Get Book Here

Book Description
There is a large group of people in a variety of fields, including finance, economics, accounting, science, mathematics, engineering, statistics, and public policy who need to understand some basic concepts of time series analysis and forecasting. Analyzing time-series data and forecasting future values of a time series are among the most important problems that analysts face in many fields. But to Successfully analyze this time series data requires that the analyst interact with computer software because the techniques and algorithms are just not suitable to manual calculations.This book has been written with the aim of solving this problems by providing a step-by-step guide to economic and financial econometrics using EViews. It contains a brief overviews of the concepts of econometric models, and data analysis techniques followed by procedures of how they can be implemented in EViews. This book is written as a compendium for undergraduate and graduate students in economics, finance, statistics and accounting. It can also serve as a guide for researchers and practitioners who desire to use EViews for analyzing financial data. This book may be used as a textbook companion for post graduate level courses in time series analysis, empirical finance, statistics and financial econometrics. Since, many organizations can improve their effectiveness and business results by making better short-to-medium term forecasts, this book should be useful to a wide variety of professionals. Topics Covered with examples Include: Chapter 1: Introduction to EViews. Chapter 2: Descriptive Statistics and Preliminary Tests. Chapter 3: Running Regression Analysis in EViews. Chapter 4: Forecasting Using Regression Models. Chapter 5: Economic Forecasting using ARIMA Modelling. Chapter 6: Volatility Modeling: ARCH, GARCH and EGARCH Models. An Introduction to Financial Econometrics. Chapter 7: Vector Autoregressive (VAR) Model. An Introduction to Macroeconometrics. Chapter 8: Vector Error Correction Model (VECM). Chapter 9: Autoregressive Distributed Lag Model (ARDL). Chapter 10: Panel Data Analysis

Introduction to Econometrics

Introduction to Econometrics PDF Author: James H. Stock
Publisher: Prentice Hall
ISBN: 9780133486872
Category : Econometrics
Languages : en
Pages : 0

Get Book Here

Book Description
For courses in Introductory Econometrics Engaging applications bring the theory and practice of modern econometrics to life. Ensure students grasp the relevance of econometrics with Introduction to Econometrics-the text that connects modern theory and practice with motivating, engaging applications. The Third Edition Update maintains a focus on currency, while building on the philosophy that applications should drive the theory, not the other way around. This program provides a better teaching and learning experience-for you and your students. Here's how: Personalized learning with MyEconLab-recommendations to help students better prepare for class, quizzes, and exams-and ultimately achieve improved comprehension in the course. Keeping it current with new and updated discussions on topics of particular interest to today's students. Presenting consistency through theory that matches application. Offering a full array of pedagogical features. Note: You are purchasing a standalone product; MyEconLab does not come packaged with this content. If you would like to purchase both the physical text and MyEconLab search for ISBN-10: 0133595420 ISBN-13: 9780133595420. That package includes ISBN-10: 0133486877 /ISBN-13: 9780133486872 and ISBN-10: 0133487679/ ISBN-13: 9780133487671. MyEconLab is not a self-paced technology and should only be purchased when required by an instructor.

Using R for Principles of Econometrics

Using R for Principles of Econometrics PDF Author: Constantin Colonescu
Publisher: Lulu.com
ISBN: 1387473611
Category : Business & Economics
Languages : en
Pages : 278

Get Book Here

Book Description
This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.

Regression Modeling Strategies

Regression Modeling Strategies PDF Author: Frank E. Harrell
Publisher: Springer Science & Business Media
ISBN: 147573462X
Category : Mathematics
Languages : en
Pages : 583

Get Book Here

Book Description
Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".