Search for Dark Matter Satellites Using the FERMI-LAT.

Search for Dark Matter Satellites Using the FERMI-LAT. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 29

Get Book Here

Book Description
Numerical simulations based on the?CDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the?-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard?-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on?-ray spectra consistent with WIMP annihilation through the b{bar b} channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the b{bar b} channel.

Search for Dark Matter Satellites Using the FERMI-LAT.

Search for Dark Matter Satellites Using the FERMI-LAT. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 29

Get Book Here

Book Description
Numerical simulations based on the?CDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the?-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard?-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on?-ray spectra consistent with WIMP annihilation through the b{bar b} channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the b{bar b} channel.

The Search for WIMP Dark Matter Continuum Gamma-ray Emission from Dark Matter Satellites in the Milky Way Using the Fermi LAT

The Search for WIMP Dark Matter Continuum Gamma-ray Emission from Dark Matter Satellites in the Milky Way Using the Fermi LAT PDF Author: Wang Ping
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 167

Get Book Here

Book Description
This thesis focuses on the search for unknown dark matter (DM) satellites in the Milky Way using the Fermi Large Area Space Telescope (LAT). The Fermi Gamma-ray Space Telescope (Fermi) is a next generation space observatory, which was successfully launched on June 11th, 2008. The LAT is the principal scientific instrument onboard. Its unprecedented angular resolution and sensitivity in the 100 MeV to > 300 GeV energy range makes it an excellent instrument for probing the sky for DM satellites. Current N-body simulations based on the Lambda-CDM cosmology model predict a large number of as yet unobserved DM satellites in our galaxy; some satellites are predicted to be extended sources (> 1deg extension) as seen by the LAT. Our work assumes that a significant component of DM is a Weakly Interacting Massive Particle (WIMP) in the 100 GeV mass range. The annihilation of WIMPs results in many high energy gamma rays that can be well measured by the LAT. The WIMP produced gamma-ray spectrum from the putative DM satellites is considerably harder than most astrophysical sources. Also, DM satellites have no astronomical counterparts in the X-ray and radio bands, and the emission has no time variability. My thesis will focus on a blind analysis in the search for unknown DM satellites using one year of LAT data, and setting constraints on some WIMP models based on the results of our analysis in which we find no candidates.

The Search for WIMP Dark Matter Continuum Gamma-ray Emission from Dark Matter Satellites in the Milky Way Using the Fermi LAT

The Search for WIMP Dark Matter Continuum Gamma-ray Emission from Dark Matter Satellites in the Milky Way Using the Fermi LAT PDF Author: Wang Ping
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis focuses on the search for unknown dark matter (DM) satellites in the Milky Way using the Fermi Large Area Space Telescope (LAT). The Fermi Gamma-ray Space Telescope (Fermi) is a next generation space observatory, which was successfully launched on June 11th, 2008. The LAT is the principal scientific instrument onboard. Its unprecedented angular resolution and sensitivity in the 100 MeV to> 300 GeV energy range makes it an excellent instrument for probing the sky for DM satellites. Current N-body simulations based on the Lambda-CDM cosmology model predict a large number of as yet unobserved DM satellites in our galaxy; some satellites are predicted to be extended sources (> 1deg extension) as seen by the LAT. Our work assumes that a significant component of DM is a Weakly Interacting Massive Particle (WIMP) in the 100 GeV mass range. The annihilation of WIMPs results in many high energy gamma rays that can be well measured by the LAT. The WIMP produced gamma-ray spectrum from the putative DM satellites is considerably harder than most astrophysical sources. Also, DM satellites have no astronomical counterparts in the X-ray and radio bands, and the emission has no time variability. My thesis will focus on a blind analysis in the search for unknown DM satellites using one year of LAT data, and setting constraints on some WIMP models based on the results of our analysis in which we find no candidates.

Dark Matter Searches with the Fermi-LAT in the Direction of Dwarf Spheroidals

Dark Matter Searches with the Fermi-LAT in the Direction of Dwarf Spheroidals PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description


Indirect Searches for Dark Matter with the Fermi Large Area Telescope

Indirect Searches for Dark Matter with the Fermi Large Area Telescope PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
There is overwhelming evidence that non-baryonic dark matter constitutes ~ 27% of the energy density of the Universe. Weakly Interacting Massive Particles (WIMPs) are promising dark matter candidates that may produce [gamma] rays via annihilation or decay detectable by the Fermi Large Area Telescope (LAT). A detection of WIMPs would also indicate the existence of physics beyond the Standard Model. We present recent results from the two cleanest indirect WIMP searches by the Fermi-LAT Collaboration: searches for [gamma]-ray spectral lines and [gamma]-ray emission associated with Milky Way dwarf spheroidal satellite galaxies.

Limits to Dark Matter Annihilation Cross-section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies

Limits to Dark Matter Annihilation Cross-section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.

The Search for Dark Matter with the Fermi Gamma Ray Space Telescope

The Search for Dark Matter with the Fermi Gamma Ray Space Telescope PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Fermi Gamma-Ray Space Telescope has been scanning the gamma ray sky since it was launched by NASA in June 2008 and has a mission lifetime goal of 10 years. Largely due to our particle physics heritage, one of the main physics topics being studied by the Fermi LAT Collaboration is the search for dark matter via indirect detection. My talk will review the progress of these studies, something on how the LAT detector enables them, and expectations for the future. I will discuss both gamma-ray and (electron + positron) searches for dark matter, and some resulting theoretical implications.

Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope

Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma-ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma-ray flux upper limits between 500 MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical Standard Model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma-ray background modeling, and assumed dark matter density profile.

Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10−26 cm3 s−1 at 5 GeV to about 5 x 10−23 cm3 s−1 at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (≈3 x 10−26 cm3 s−1 for a purely s-wave cross section), without assuming additional boost factors.

Searching for Dwarf Spheroidal Galaxies and Other Galactic Dark Matter Substructures with the Fermi Large Area Telescope

Searching for Dwarf Spheroidal Galaxies and Other Galactic Dark Matter Substructures with the Fermi Large Area Telescope PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 176

Get Book Here

Book Description
Over the past century, it has become clear that about a quarter of the known universe is composed of an invisible, massive component termed ''dark matter''. Some of the most popular theories of physics beyond the Standard Model suggest that dark matter may be a new fundamental particle that could self-annihilate to produce [gamma] rays. Nearby over-densities in the dark matter halo of our Milky Way present some of the most promising targets for detecting the annihilation of dark matter. We used the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope to search for [gamma] rays produced by dark matter annihilation in Galactic dark matter substructures. We searched for [gamma]-ray emission coincident with Milky Way dwarf spheroidal satellite galaxies, which trace the most massive Galactic dark matter substructures. We also sought to identify nearby dark matter substructures that lack all astrophysical tracers and would be detectable only through [gamma]-ray emission from dark matter annihilation. We found no conclusive evidence for [gamma]-ray emission from dark matter annihilation, and we set stringent and robust constraints on the dark matter annihilation cross section. While [gamma]-ray searches for dark matter substructure are currently the most sensitive and robust probes of dark matter annihilation, they are just beginning to intersect the theoretically preferred region of dark matter parameter space. Thus, we consider future prospects for increasing the sensitivity of [gamma]-ray searches through improvements to the LAT instrument performance and through upcoming wide- field optical surveys.