Scientific Inquiry in Mathematics - Theory and Practice

Scientific Inquiry in Mathematics - Theory and Practice PDF Author: Andrzej Sokolowski
Publisher: Springer
ISBN: 3319895249
Category : Education
Languages : en
Pages : 143

Get Book Here

Book Description
This valuable resource provides an overview of recent research and strategies in developing and applying modelling to promote practice-based research in STEM education. In doing so, it bridges barriers across academic disciplines by suggesting activities that promote integration of qualitative science concepts with the tools of mathematics and engineering. The volume’s three parts offer a comprehensive review, by 1) Presenting a conceptual background of how scientific inquiry can be induced in mathematics classes considering recommendations of prior research, 2) Collecting case studies that were designed using scientific inquiry process designed for math classes, and 3) Exploring future possibilities and directions for the research included within. Among the topics discussed: · STEM education: A platform for multidisciplinary learning. · Teaching and learning representations in STEM. · Formulating conceptual framework for multidisciplinary STEM modeling. · Exploring function continuity in context. · Exploring function transformations using a dynamic system. Scientific Inquiry in Mathematics - Theory and Practice delivers hands-on and concrete strategies for effective STEM teaching in practice to educators within the fields of mathematics, science, and technology. It will be of interest to practicing and future mathematics teachers at all levels, as well as teacher educators, mathematics education researchers, and undergraduate and graduate mathematics students interested in research based methods for integrating inquiry-based learning into STEM classrooms.

Scientific Inquiry in Mathematics - Theory and Practice

Scientific Inquiry in Mathematics - Theory and Practice PDF Author: Andrzej Sokolowski
Publisher: Springer
ISBN: 3319895249
Category : Education
Languages : en
Pages : 143

Get Book Here

Book Description
This valuable resource provides an overview of recent research and strategies in developing and applying modelling to promote practice-based research in STEM education. In doing so, it bridges barriers across academic disciplines by suggesting activities that promote integration of qualitative science concepts with the tools of mathematics and engineering. The volume’s three parts offer a comprehensive review, by 1) Presenting a conceptual background of how scientific inquiry can be induced in mathematics classes considering recommendations of prior research, 2) Collecting case studies that were designed using scientific inquiry process designed for math classes, and 3) Exploring future possibilities and directions for the research included within. Among the topics discussed: · STEM education: A platform for multidisciplinary learning. · Teaching and learning representations in STEM. · Formulating conceptual framework for multidisciplinary STEM modeling. · Exploring function continuity in context. · Exploring function transformations using a dynamic system. Scientific Inquiry in Mathematics - Theory and Practice delivers hands-on and concrete strategies for effective STEM teaching in practice to educators within the fields of mathematics, science, and technology. It will be of interest to practicing and future mathematics teachers at all levels, as well as teacher educators, mathematics education researchers, and undergraduate and graduate mathematics students interested in research based methods for integrating inquiry-based learning into STEM classrooms.

How Students Learn

How Students Learn PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309074339
Category : Education
Languages : en
Pages : 633

Get Book Here

Book Description
How do you get a fourth-grader excited about history? How do you even begin to persuade high school students that mathematical functions are relevant to their everyday lives? In this volume, practical questions that confront every classroom teacher are addressed using the latest exciting research on cognition, teaching, and learning. How Students Learn: History, Mathematics, and Science in the Classroom builds on the discoveries detailed in the bestselling How People Learn. Now, these findings are presented in a way that teachers can use immediately, to revitalize their work in the classroom for even greater effectiveness. Organized for utility, the book explores how the principles of learning can be applied in teaching history, science, and math topics at three levels: elementary, middle, and high school. Leading educators explain in detail how they developed successful curricula and teaching approaches, presenting strategies that serve as models for curriculum development and classroom instruction. Their recounting of personal teaching experiences lends strength and warmth to this volume. The book explores the importance of balancing students' knowledge of historical fact against their understanding of concepts, such as change and cause, and their skills in assessing historical accounts. It discusses how to build straightforward science experiments into true understanding of scientific principles. And it shows how to overcome the difficulties in teaching math to generate real insight and reasoning in math students. It also features illustrated suggestions for classroom activities. How Students Learn offers a highly useful blend of principle and practice. It will be important not only to teachers, administrators, curriculum designers, and teacher educators, but also to parents and the larger community concerned about children's education.

Inquiry Strategies for Science and Mathematics Learning

Inquiry Strategies for Science and Mathematics Learning PDF Author: Denise Jarrett
Publisher:
ISBN:
Category : Cognitive learning
Languages : en
Pages : 42

Get Book Here

Book Description


Inquiry-based Science Education

Inquiry-based Science Education PDF Author: Robyn M. Gillies
Publisher: CRC Press
ISBN: 1000036316
Category : Education
Languages : en
Pages : 92

Get Book Here

Book Description
Students often think of science as disconnected pieces of information rather than a narrative that challenges their thinking, requires them to develop evidence-based explanations for the phenomena under investigation, and communicate their ideas in discipline-specific language as to why certain solutions to a problem work. The author provides teachers in primary and junior secondary school with different evidence-based strategies they can use to teach inquiry science in their classrooms. The research and theoretical perspectives that underpin the strategies are discussed as are examples of how different ones areimplemented in science classrooms to affect student engagement and learning. Key Features: Presents processes involved in teaching inquiry-based science Discusses importance of multi-modal representations in teaching inquiry based-science Covers ways to develop scientifically literacy Uses the Structure of Observed learning Outcomes (SOLO) Taxonomy to assess student reasoning, problem-solving and learning Presents ways to promote scientific discourse, including teacher-student interactions, student-student interactions, and meta-cognitive thinking

Building Support for Scholarly Practices in Mathematics Methods

Building Support for Scholarly Practices in Mathematics Methods PDF Author: Signe E. Kastberg
Publisher: IAP
ISBN: 164113027X
Category : Mathematics
Languages : en
Pages : 375

Get Book Here

Book Description
Building Support for Scholarly Practices in Mathematics Methods is the product of collaborations among over 40 mathematics teacher educators (MTEs) who teach mathematics methods courses for prospective PreK?12 teachers in many different institutional contexts and structures. Each chapter unpacks ways in which MTEs use theoretical perspectives to inform their construction of goals, activities designed to address those goals, facilitation of activities, and ways in which MTEs make sense of experiences prospective teachers have as a result. The book is organized in seven sections that highlight how the theoretical perspective of the instructor impacts scholarly inquiry and practice. The final section provides insight as we look backward to reflect, and forward with excitement, moving with the strength of the variation we found in our stories and the feeling of solidarity that results in our understandings of purposes for and insight into teaching mathematics methods. This book can serve as a resource for MTEs as they discuss and construct scholarly practices and as they undertake scholarly inquiry as a means to systematically examine their practice.

Scientific Research in Education

Scientific Research in Education PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309133092
Category : Education
Languages : en
Pages : 204

Get Book Here

Book Description
Researchers, historians, and philosophers of science have debated the nature of scientific research in education for more than 100 years. Recent enthusiasm for "evidence-based" policy and practice in educationâ€"now codified in the federal law that authorizes the bulk of elementary and secondary education programsâ€"have brought a new sense of urgency to understanding the ways in which the basic tenets of science manifest in the study of teaching, learning, and schooling. Scientific Research in Education describes the similarities and differences between scientific inquiry in education and scientific inquiry in other fields and disciplines and provides a number of examples to illustrate these ideas. Its main argument is that all scientific endeavors share a common set of principles, and that each fieldâ€"including education researchâ€"develops a specialization that accounts for the particulars of what is being studied. The book also provides suggestions for how the federal government can best support high-quality scientific research in education.

Inquiry-Based Learning for Science, Technology, Engineering, and Math (STEM) Programs

Inquiry-Based Learning for Science, Technology, Engineering, and Math (STEM) Programs PDF Author: Patrick Blessinger
Publisher: Emerald Group Publishing
ISBN: 1784418498
Category : Education
Languages : en
Pages : 361

Get Book Here

Book Description
This volume covers the many issues and concepts of how IBL can be applied to STEM programs and serves as a conceptual and practical resource and guide for educators and offers practical examples of IBL in action and diverse strategies on how to implement IBL in different contexts.

Understanding Physics Using Mathematical Reasoning

Understanding Physics Using Mathematical Reasoning PDF Author: Andrzej Sokolowski
Publisher: Springer Nature
ISBN: 3030802051
Category : Education
Languages : en
Pages : 208

Get Book Here

Book Description
This book speaks about physics discoveries that intertwine mathematical reasoning, modeling, and scientific inquiry. It offers ways of bringing together the structural domain of mathematics and the content of physics in one coherent inquiry. Teaching and learning physics is challenging because students lack the skills to merge these learning paradigms. The purpose of this book is not only to improve access to the understanding of natural phenomena but also to inspire new ways of delivering and understanding the complex concepts of physics. To sustain physics education in college classrooms, authentic training that would help develop high school students’ skills of transcending function modeling techniques to reason scientifically is needed and this book aspires to offer such training The book draws on current research in developing students’ mathematical reasoning. It identifies areas for advancements and proposes a conceptual framework that is tested in several case studies designed using that framework. Modeling Newton’s laws using limited case analysis, Modeling projectile motion using parametric equations and Enabling covariational reasoning in Einstein formula for the photoelectric effect represent some of these case studies. A wealth of conclusions that accompany these case studies, drawn from the realities of classroom teaching, is to help physics teachers and researchers adopt these ideas in practice.

Inquiry and the National Science Education Standards

Inquiry and the National Science Education Standards PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309064767
Category : Education
Languages : en
Pages : 223

Get Book Here

Book Description
Humans, especially children, are naturally curious. Yet, people often balk at the thought of learning scienceâ€"the "eyes glazed over" syndrome. Teachers may find teaching science a major challenge in an era when science ranges from the hardly imaginable quark to the distant, blazing quasar. Inquiry and the National Science Education Standards is the book that educators have been waiting forâ€"a practical guide to teaching inquiry and teaching through inquiry, as recommended by the National Science Education Standards. This will be an important resource for educators who must help school boards, parents, and teachers understand "why we can't teach the way we used to." "Inquiry" refers to the diverse ways in which scientists study the natural world and in which students grasp science knowledge and the methods by which that knowledge is produced. This book explains and illustrates how inquiry helps students learn science content, master how to do science, and understand the nature of science. This book explores the dimensions of teaching and learning science as inquiry for K-12 students across a range of science topics. Detailed examples help clarify when teachers should use the inquiry-based approach and how much structure, guidance, and coaching they should provide. The book dispels myths that may have discouraged educators from the inquiry-based approach and illuminates the subtle interplay between concepts, processes, and science as it is experienced in the classroom. Inquiry and the National Science Education Standards shows how to bring the standards to life, with features such as classroom vignettes exploring different kinds of inquiries for elementary, middle, and high school and Frequently Asked Questions for teachers, responding to common concerns such as obtaining teaching supplies. Turning to assessment, the committee discusses why assessment is important, looks at existing schemes and formats, and addresses how to involve students in assessing their own learning achievements. In addition, this book discusses administrative assistance, communication with parents, appropriate teacher evaluation, and other avenues to promoting and supporting this new teaching paradigm.

Mathematics as the Science of Patterns

Mathematics as the Science of Patterns PDF Author: Patrick M. Jenlink
Publisher:
ISBN: 9781648027451
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
Mathematics as the Science of Patterns: Making the Invisible Visible to Students through Teaching introduces the reader to a collection of thoughtful, research-based works by authors that represent current thinking about mathematics, mathematics education, and the preparation of mathematics teachers. Each chapter focuses on mathematics teaching and the preparation of teachers who will enter classrooms to instruct the next generation of students in mathematics. The value of patterns to the teaching and learning of mathematics is well understood, both in terms of research and application. When we involve or appeal to pattern in teaching mathematics, it is usually because we are trying to help students to extract greater meaning, or enjoyment, or both, from the experience of learning environments within which they are occupied, and perhaps also to facilitate remembering. As a general skill it is thought that the ability to discern a pattern is a precursor to the ability to generalize and abstract, a skill essential in the early years of learning and beyond. Research indicates that the larger problem in teaching mathematics does not lie primarily with students; rather it is with the teachers themselves. In order to make changes for students there first needs to be a process of change for teachers. Understanding the place of patterns in learning mathematics is a predicate to understanding how to teach mathematics and how to use pedagogical reasoning necessary in teaching mathematics. Importantly, the lack of distinction created by the pedagogical use of patterns is not immediately problematic to the student or the teacher. The deep-seated cognitive patterns that both teachers and students bring to the classroom require change. Chapter 1 opens the book with a focus on mathematics as the science of patterns and the importance of patterns in mathematical problem solving, providing the reader with an introduction. The authors of Chapter 2 revisit the work of Pólya and the development and implementation of problem solving in mathematics. In Chapter 3, the authors present an argument for core pedagogical content knowledge in mathematics teacher preparation. The authors of Chapter 4 focus on preservice teachers' patterns of conception as related to understanding number and operation. In Chapter 5 the authors examine the role of visual representation in exploring proportional reasoning, denoting the importance of helping learners make their thinking visible. The authors of Chapter 6 examine patterns and relationships, and the importance of each in assisting students' learning and development in mathematical understanding. The authors of Chapter 7 examine the use of worked examples as a scalable practice, with emphasis on the importance of worked examples in teaching fraction magnitude and computation is discussed. In Chapter 8, the authors expand on the zone of proximal development to investigate the potential of Zankov's Lesson in terms of students analyzing numerical equalities. The authors of Chapter 9 focus on high leverage mathematical practices in elementary pre-service teacher preparation, drawing into specific relief the APEX cycle to develop deep thinking. In Chapter 10, the author focuses on number talks and the engagement of students in mathematical reasoning, which provides opportunities for students to be sensemakers of mathematics. Chapter 11 presents an epilogue, focusing on the importance of recognizing the special nature of mathematics knowledge for teaching.