Author: John J. Barton
Publisher: Addison-Wesley Professional
ISBN:
Category : Business & Economics
Languages : en
Pages : 696
Book Description
Highlights: builds on knowledge of both FORTRAN and C, the languages most familiar to scientists and engineers; systematically treats object-oriented programming, templates, and the C++ type system; relates the C++ programming process to expressing commonality in the design and implementation of programs; describes how to use existing FORTRAN and C subroutine libraries to implement C++ classes; introduces advanced techniques coordinating templates, inheritance, virtual function interfaces, and exceptions in substantive examples; provides examples, including an extensive family of array classes, smart pointers, class wrappers for LAPACK, classes for abstract algebra and dimensional analysis, function objects, exploiting existing C and FORTRAN libraries, automatic differentiation, and data analysis via nonlinear least squares using the singular value decomposition; and references key sources of new programming ideas and C++ programming techniques.
Scientific and Engineering C++
Author: John J. Barton
Publisher: Addison-Wesley Professional
ISBN:
Category : Business & Economics
Languages : en
Pages : 696
Book Description
Highlights: builds on knowledge of both FORTRAN and C, the languages most familiar to scientists and engineers; systematically treats object-oriented programming, templates, and the C++ type system; relates the C++ programming process to expressing commonality in the design and implementation of programs; describes how to use existing FORTRAN and C subroutine libraries to implement C++ classes; introduces advanced techniques coordinating templates, inheritance, virtual function interfaces, and exceptions in substantive examples; provides examples, including an extensive family of array classes, smart pointers, class wrappers for LAPACK, classes for abstract algebra and dimensional analysis, function objects, exploiting existing C and FORTRAN libraries, automatic differentiation, and data analysis via nonlinear least squares using the singular value decomposition; and references key sources of new programming ideas and C++ programming techniques.
Publisher: Addison-Wesley Professional
ISBN:
Category : Business & Economics
Languages : en
Pages : 696
Book Description
Highlights: builds on knowledge of both FORTRAN and C, the languages most familiar to scientists and engineers; systematically treats object-oriented programming, templates, and the C++ type system; relates the C++ programming process to expressing commonality in the design and implementation of programs; describes how to use existing FORTRAN and C subroutine libraries to implement C++ classes; introduces advanced techniques coordinating templates, inheritance, virtual function interfaces, and exceptions in substantive examples; provides examples, including an extensive family of array classes, smart pointers, class wrappers for LAPACK, classes for abstract algebra and dimensional analysis, function objects, exploiting existing C and FORTRAN libraries, automatic differentiation, and data analysis via nonlinear least squares using the singular value decomposition; and references key sources of new programming ideas and C++ programming techniques.
Parallel Programming Using C++
Author: Gregory V. Wilson
Publisher: MIT Press
ISBN: 9780262731188
Category : Computers
Languages : en
Pages : 796
Book Description
Foreword by Bjarne Stroustrup Software is generally acknowledged to be the single greatest obstacle preventing mainstream adoption of massively-parallel computing. While sequential applications are routinely ported to platforms ranging from PCs to mainframes, most parallel programs only ever run on one type of machine. One reason for this is that most parallel programming systems have failed to insulate their users from the architectures of the machines on which they have run. Those that have been platform-independent have usually also had poor performance. Many researchers now believe that object-oriented languages may offer a solution. By hiding the architecture-specific constructs required for high performance inside platform-independent abstractions, parallel object-oriented programming systems may be able to combine the speed of massively-parallel computing with the comfort of sequential programming. Parallel Programming Using C++ describes fifteen parallel programming systems based on C++, the most popular object-oriented language of today. These systems cover the whole spectrum of parallel programming paradigms, from data parallelism through dataflow and distributed shared memory to message-passing control parallelism. For the parallel programming community, a common parallel application is discussed in each chapter, as part of the description of the system itself. By comparing the implementations of the polygon overlay problem in each system, the reader can get a better sense of their expressiveness and functionality for a common problem. For the systems community, the chapters contain a discussion of the implementation of the various compilers and runtime systems. In addition to discussing the performance of polygon overlay, several of the contributors also discuss the performance of other, more substantial, applications. For the research community, the contributors discuss the motivations for and philosophy of their systems. As well, many of the chapters include critiques that complete the research arc by pointing out possible future research directions. Finally, for the object-oriented community, there are many examples of how encapsulation, inheritance, and polymorphism can be used to control the complexity of developing, debugging, and tuning parallel software.
Publisher: MIT Press
ISBN: 9780262731188
Category : Computers
Languages : en
Pages : 796
Book Description
Foreword by Bjarne Stroustrup Software is generally acknowledged to be the single greatest obstacle preventing mainstream adoption of massively-parallel computing. While sequential applications are routinely ported to platforms ranging from PCs to mainframes, most parallel programs only ever run on one type of machine. One reason for this is that most parallel programming systems have failed to insulate their users from the architectures of the machines on which they have run. Those that have been platform-independent have usually also had poor performance. Many researchers now believe that object-oriented languages may offer a solution. By hiding the architecture-specific constructs required for high performance inside platform-independent abstractions, parallel object-oriented programming systems may be able to combine the speed of massively-parallel computing with the comfort of sequential programming. Parallel Programming Using C++ describes fifteen parallel programming systems based on C++, the most popular object-oriented language of today. These systems cover the whole spectrum of parallel programming paradigms, from data parallelism through dataflow and distributed shared memory to message-passing control parallelism. For the parallel programming community, a common parallel application is discussed in each chapter, as part of the description of the system itself. By comparing the implementations of the polygon overlay problem in each system, the reader can get a better sense of their expressiveness and functionality for a common problem. For the systems community, the chapters contain a discussion of the implementation of the various compilers and runtime systems. In addition to discussing the performance of polygon overlay, several of the contributors also discuss the performance of other, more substantial, applications. For the research community, the contributors discuss the motivations for and philosophy of their systems. As well, many of the chapters include critiques that complete the research arc by pointing out possible future research directions. Finally, for the object-oriented community, there are many examples of how encapsulation, inheritance, and polymorphism can be used to control the complexity of developing, debugging, and tuning parallel software.
Guide to Scientific Computing in C++
Author: Joe Pitt-Francis
Publisher: Springer Science & Business Media
ISBN: 1447127366
Category : Computers
Languages : en
Pages : 257
Book Description
This easy-to-read textbook/reference presents an essential guide to object-oriented C++ programming for scientific computing. With a practical focus on learning by example, the theory is supported by numerous exercises. Features: provides a specific focus on the application of C++ to scientific computing, including parallel computing using MPI; stresses the importance of a clear programming style to minimize the introduction of errors into code; presents a practical introduction to procedural programming in C++, covering variables, flow of control, input and output, pointers, functions, and reference variables; exhibits the efficacy of classes, highlighting the main features of object-orientation; examines more advanced C++ features, such as templates and exceptions; supplies useful tips and examples throughout the text, together with chapter-ending exercises, and code available to download from Springer.
Publisher: Springer Science & Business Media
ISBN: 1447127366
Category : Computers
Languages : en
Pages : 257
Book Description
This easy-to-read textbook/reference presents an essential guide to object-oriented C++ programming for scientific computing. With a practical focus on learning by example, the theory is supported by numerous exercises. Features: provides a specific focus on the application of C++ to scientific computing, including parallel computing using MPI; stresses the importance of a clear programming style to minimize the introduction of errors into code; presents a practical introduction to procedural programming in C++, covering variables, flow of control, input and output, pointers, functions, and reference variables; exhibits the efficacy of classes, highlighting the main features of object-orientation; examines more advanced C++ features, such as templates and exceptions; supplies useful tips and examples throughout the text, together with chapter-ending exercises, and code available to download from Springer.
Scientific Programming and Computer Architecture
Author: Divakar Viswanath
Publisher: MIT Press
ISBN: 0262036290
Category : Computers
Languages : en
Pages : 625
Book Description
A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.
Publisher: MIT Press
ISBN: 0262036290
Category : Computers
Languages : en
Pages : 625
Book Description
A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.
Software Engineering for Science
Author: Jeffrey C. Carver
Publisher: CRC Press
ISBN: 1498743862
Category : Computers
Languages : en
Pages : 311
Book Description
Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software.
Publisher: CRC Press
ISBN: 1498743862
Category : Computers
Languages : en
Pages : 311
Book Description
Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software.
C++ and Object-Oriented Numeric Computing for Scientists and Engineers
Author: Daoqi Yang
Publisher: Springer Science & Business Media
ISBN: 1461301890
Category : Computers
Languages : en
Pages : 452
Book Description
This book is an easy, concise but fairly complete introduction to ISO/ANSI C++ with special emphasis on object-oriented numeric computation. A user-defined numeric linear algebra library accompanies the book and can be downloaded from the web.
Publisher: Springer Science & Business Media
ISBN: 1461301890
Category : Computers
Languages : en
Pages : 452
Book Description
This book is an easy, concise but fairly complete introduction to ISO/ANSI C++ with special emphasis on object-oriented numeric computation. A user-defined numeric linear algebra library accompanies the book and can be downloaded from the web.
Introduction to Scientific and Technical Computing
Author: Frank T. Willmore
Publisher: CRC Press
ISBN: 1315351854
Category : Computers
Languages : en
Pages : 266
Book Description
Created to help scientists and engineers write computer code, this practical book addresses the important tools and techniques that are necessary for scientific computing, but which are not yet commonplace in science and engineering curricula. This book contains chapters summarizing the most important topics that computational researchers need to know about. It leverages the viewpoints of passionate experts involved with scientific computing courses around the globe and aims to be a starting point for new computational scientists and a reference for the experienced. Each contributed chapter focuses on a specific tool or skill, providing the content needed to provide a working knowledge of the topic in about one day. While many individual books on specific computing topics exist, none is explicitly focused on getting technical professionals and students up and running immediately across a variety of computational areas.
Publisher: CRC Press
ISBN: 1315351854
Category : Computers
Languages : en
Pages : 266
Book Description
Created to help scientists and engineers write computer code, this practical book addresses the important tools and techniques that are necessary for scientific computing, but which are not yet commonplace in science and engineering curricula. This book contains chapters summarizing the most important topics that computational researchers need to know about. It leverages the viewpoints of passionate experts involved with scientific computing courses around the globe and aims to be a starting point for new computational scientists and a reference for the experienced. Each contributed chapter focuses on a specific tool or skill, providing the content needed to provide a working knowledge of the topic in about one day. While many individual books on specific computing topics exist, none is explicitly focused on getting technical professionals and students up and running immediately across a variety of computational areas.
A Framework for K-12 Science Education
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400
Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Publisher: National Academies Press
ISBN: 0309214459
Category : Education
Languages : en
Pages : 400
Book Description
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
Fortran 95 Handbook
Author: Jeanne C. Adams
Publisher: MIT Press
ISBN: 9780262510967
Category : Computers
Languages : en
Pages : 732
Book Description
The Fortran 95 Handbook, a comprehensive reference work for the Fortran programmer and implementor, contains a complete description of the Fortran 95 programming language. The chapters follow the same sequence of topics as the Fortran 95 standard, but contain a more thorough and informal explanation of the language's features and many more examples. Appendices describe all the intrinsic features, the deprecated features, and the complete syntax of the language. The Handbook also includs a feature not found in the standard: a cross reference of all the syntax terms, giving the rule that defines each term and all the rules that reference it. Major new features added in Fortran 95 are the 'FORALL' statement and construct, pure and elemental procedures, and structure and pointer default initialization.
Publisher: MIT Press
ISBN: 9780262510967
Category : Computers
Languages : en
Pages : 732
Book Description
The Fortran 95 Handbook, a comprehensive reference work for the Fortran programmer and implementor, contains a complete description of the Fortran 95 programming language. The chapters follow the same sequence of topics as the Fortran 95 standard, but contain a more thorough and informal explanation of the language's features and many more examples. Appendices describe all the intrinsic features, the deprecated features, and the complete syntax of the language. The Handbook also includs a feature not found in the standard: a cross reference of all the syntax terms, giving the rule that defines each term and all the rules that reference it. Major new features added in Fortran 95 are the 'FORALL' statement and construct, pure and elemental procedures, and structure and pointer default initialization.
Scientific Programming
Author: Luciano Maria Barone
Publisher: World Scientific
ISBN: 9814513415
Category : Computers
Languages : en
Pages : 718
Book Description
The book teaches students to model a scientific problem and write a computer program in C language to solve that problem. It introduces the basics of C language, and then describes and discusses algorithms commonly used in scientific applications (e.g. searching, graphs, statistics, equation solving, Monte Carlo methods etc.).
Publisher: World Scientific
ISBN: 9814513415
Category : Computers
Languages : en
Pages : 718
Book Description
The book teaches students to model a scientific problem and write a computer program in C language to solve that problem. It introduces the basics of C language, and then describes and discusses algorithms commonly used in scientific applications (e.g. searching, graphs, statistics, equation solving, Monte Carlo methods etc.).