Author: Goerg H. Michler
Publisher: Springer Science & Business Media
ISBN: 3540363521
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
The study of polymers by electron microscopy (EM) needs special techniques, precautions and preparation methods, including ultramicrotomy. General characteristics of the different techniques of EM, including scanning force microscopy, are given in this hands-on book. The application of these techniques to the study of morphology and properties, particularly micromechanical properties, is described in detail. Examples from all classes of polymers are presented.
Electron Microscopy of Polymers
Polymer Microscopy
Author: Linda Sawyer
Publisher: Springer Science & Business Media
ISBN: 0387726284
Category : Science
Languages : en
Pages : 568
Book Description
This extensively updated and revised Third Edition is a comprehensive and practical guide to the study of the microstructure of polymers. It is the result of the authors' many years of academic and industrial experience. Introductory chapters deal with the basic concepts of both polymer morphology and processing and microscopy and imaging theory. The core of the book is more applied, with many examples of specimen preparation and image interpretation leading to materials characterization. Emerging techniques such as compositional mapping in which microscopy is combined with spectroscopy are considered. The book closes with a problem solving guide.
Publisher: Springer Science & Business Media
ISBN: 0387726284
Category : Science
Languages : en
Pages : 568
Book Description
This extensively updated and revised Third Edition is a comprehensive and practical guide to the study of the microstructure of polymers. It is the result of the authors' many years of academic and industrial experience. Introductory chapters deal with the basic concepts of both polymer morphology and processing and microscopy and imaging theory. The core of the book is more applied, with many examples of specimen preparation and image interpretation leading to materials characterization. Emerging techniques such as compositional mapping in which microscopy is combined with spectroscopy are considered. The book closes with a problem solving guide.
Scanning Force Microscopy of Polymers
Author: G. Julius Vancso
Publisher: Springer Science & Business Media
ISBN: 3642012310
Category : Technology & Engineering
Languages : en
Pages : 258
Book Description
Scope of the Book Synthetic and natural polymers exhibit a complex structural and morphological hierarchy on multiple length scales [1], which determines their performance. Thus, research aiming at visualizing structure and morphology using a multitude of microscopy techniques has received considerable attention since the early days of polymer science and technology. Various well-developed techniques such as optical microscopy and different forms of electron microscopy (Scanning Electron Micr- copy, SEM; Transmission Electron Microscopy, TEM; Environmental Scanning Electron Microscopy, ESEM) allow one to view polymeric structure at different levels of magni?cation. These classical techniques, and their applications to po- mers, are well documented in the literature [2, 3]. The invention of Scanning Tunneling Microscopy (STM) inspired the devel- ment of Atomic Force Microscopy (AFM) and other forms of scanning proximity microscopes in the late 1980s [4, 5]. AFM, unlike STM, can be used to image n- conducting specimens such as polymers. In addition, AFM imaging is feasible in liquids, which has several advantages. Using liquid imaging cells the forces between specimen and AFM probe are drastically reduced, thus sample damage is prevented. In addition, the use of water as imaging medium opened up new applications aiming at imaging, characterizing, and analyzing biologically important systems.
Publisher: Springer Science & Business Media
ISBN: 3642012310
Category : Technology & Engineering
Languages : en
Pages : 258
Book Description
Scope of the Book Synthetic and natural polymers exhibit a complex structural and morphological hierarchy on multiple length scales [1], which determines their performance. Thus, research aiming at visualizing structure and morphology using a multitude of microscopy techniques has received considerable attention since the early days of polymer science and technology. Various well-developed techniques such as optical microscopy and different forms of electron microscopy (Scanning Electron Micr- copy, SEM; Transmission Electron Microscopy, TEM; Environmental Scanning Electron Microscopy, ESEM) allow one to view polymeric structure at different levels of magni?cation. These classical techniques, and their applications to po- mers, are well documented in the literature [2, 3]. The invention of Scanning Tunneling Microscopy (STM) inspired the devel- ment of Atomic Force Microscopy (AFM) and other forms of scanning proximity microscopes in the late 1980s [4, 5]. AFM, unlike STM, can be used to image n- conducting specimens such as polymers. In addition, AFM imaging is feasible in liquids, which has several advantages. Using liquid imaging cells the forces between specimen and AFM probe are drastically reduced, thus sample damage is prevented. In addition, the use of water as imaging medium opened up new applications aiming at imaging, characterizing, and analyzing biologically important systems.
Polymer Morphology
Author: Qipeng Guo
Publisher: John Wiley & Sons
ISBN: 1118452151
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. • Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology • Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography • Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites • Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials
Publisher: John Wiley & Sons
ISBN: 1118452151
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods. • Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology • Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography • Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites • Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials
Polymer Microscopy
Author: Linda Sawyer
Publisher: Springer Science & Business Media
ISBN: 9401585954
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
A practical guide to the study and understanding of the structure of synthetic polymer materials using the complete range of microscopic techniques. The major part of the book is devoted to specimen preparation and applications. New applications and additional references provide a critical update.
Publisher: Springer Science & Business Media
ISBN: 9401585954
Category : Technology & Engineering
Languages : en
Pages : 417
Book Description
A practical guide to the study and understanding of the structure of synthetic polymer materials using the complete range of microscopic techniques. The major part of the book is devoted to specimen preparation and applications. New applications and additional references provide a critical update.
Applied Polymer Light Microscopy
Author: Derek A. Hemsley
Publisher: Springer Science & Business Media
ISBN: 9401174741
Category : Science
Languages : en
Pages : 317
Book Description
Synthetic polymers make excellent specimens for light microscopy. Despite this, the use of the technique, at least in its advanced forms, is not so widespread as might be expected. Although reliable and relevant data are difficult to find and quantify, it seems that in other fields of materials science and technology there is a greater readiness to tum to the microscope in research, in industrial problem solving, or for quality assessment and control. It also seems that the reasons for the present situation are partly historical, partly the result of the structure of the plastics and rubber industries, and partly the education and training background of senior staff who tend to be chemistry or engineering based. In neither field does light microscopy feature strongly in the basic training. The primary aim of this book is to provide some insight into the range oflight microscopy techniques applicable to polymeric specimens, and to highlight typical applications to commercial polymers and polymer products. Where appropriate, the optical techniques involved are discussed in some detail. However, it has not been the intention to produce a light microscopy textbook dealing with the principles and design of the basic instrument. Many such texts are available, and selected examples are cited in the reference list at the end of most chapters.
Publisher: Springer Science & Business Media
ISBN: 9401174741
Category : Science
Languages : en
Pages : 317
Book Description
Synthetic polymers make excellent specimens for light microscopy. Despite this, the use of the technique, at least in its advanced forms, is not so widespread as might be expected. Although reliable and relevant data are difficult to find and quantify, it seems that in other fields of materials science and technology there is a greater readiness to tum to the microscope in research, in industrial problem solving, or for quality assessment and control. It also seems that the reasons for the present situation are partly historical, partly the result of the structure of the plastics and rubber industries, and partly the education and training background of senior staff who tend to be chemistry or engineering based. In neither field does light microscopy feature strongly in the basic training. The primary aim of this book is to provide some insight into the range oflight microscopy techniques applicable to polymeric specimens, and to highlight typical applications to commercial polymers and polymer products. Where appropriate, the optical techniques involved are discussed in some detail. However, it has not been the intention to produce a light microscopy textbook dealing with the principles and design of the basic instrument. Many such texts are available, and selected examples are cited in the reference list at the end of most chapters.
SEM of Plastics Failure
Author: Gottfried W. Ehrenstein
Publisher:
ISBN: 9783446422421
Category : Plastics
Languages : de
Pages : 267
Book Description
Publisher:
ISBN: 9783446422421
Category : Plastics
Languages : de
Pages : 267
Book Description
Molecular Soft-Interface Science
Author: Mizuo Maeda
Publisher: Springer
ISBN: 4431568778
Category : Technology & Engineering
Languages : en
Pages : 219
Book Description
This book offers a comprehensive treatment of the molecular design, characterization, and physical chemistry of soft interfaces. At the same time, the book aims to encourage the fabrication of functional materials including biomaterials. During the past few decades there has been steady growth in soft-interface science, and that growth has been especially rapid in the twenty-first century. The field is interdisciplinary because it involves chemistry, polymer science, materials science, physical chemistry, and biology. Based on the increasing interdisciplinary nature of undergraduate and graduate programs, the primary goal of this present work is to serve as a comprehensive resource for senior-level undergraduates and for graduate students, particularly in polymer chemistry, materials science, bioconjugate chemistry, bioengineering, and biomaterials. Additionally, with the growing interest in the fabrication of functional soft materials, this book provides essential fundamental information for researchers not only in academia but also in industry.
Publisher: Springer
ISBN: 4431568778
Category : Technology & Engineering
Languages : en
Pages : 219
Book Description
This book offers a comprehensive treatment of the molecular design, characterization, and physical chemistry of soft interfaces. At the same time, the book aims to encourage the fabrication of functional materials including biomaterials. During the past few decades there has been steady growth in soft-interface science, and that growth has been especially rapid in the twenty-first century. The field is interdisciplinary because it involves chemistry, polymer science, materials science, physical chemistry, and biology. Based on the increasing interdisciplinary nature of undergraduate and graduate programs, the primary goal of this present work is to serve as a comprehensive resource for senior-level undergraduates and for graduate students, particularly in polymer chemistry, materials science, bioconjugate chemistry, bioengineering, and biomaterials. Additionally, with the growing interest in the fabrication of functional soft materials, this book provides essential fundamental information for researchers not only in academia but also in industry.
Scanning Electron Microscopy for the Life Sciences
Author: Heide Schatten
Publisher: Cambridge University Press
ISBN: 0521195993
Category : Science
Languages : en
Pages : 275
Book Description
A guide to modern scanning electron microscopy instrumentation, methodology and techniques, highlighting novel applications to cell and molecular biology.
Publisher: Cambridge University Press
ISBN: 0521195993
Category : Science
Languages : en
Pages : 275
Book Description
A guide to modern scanning electron microscopy instrumentation, methodology and techniques, highlighting novel applications to cell and molecular biology.
Deformation and Fracture Behaviour of Polymer Materials
Author: Wolfgang Grellmann
Publisher: Springer
ISBN: 3319418793
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
This book covers the most recent advances in the deformation and fracture behaviour of polymer material. It provides deeper insight into related morphology–property correlations of thermoplastics, elastomers and polymer resins. Each chapter of this book gives a comprehensive review of state-of-the-art methods of materials testing and diagnostics, tailored for plastic pipes, films and adhesive systems as well as elastomeric components and others. The investigation of deformation and fracture behaviour using the experimental methods of fracture mechanics has been the subject of intense research during the last decade. In a systematic manner, modern aspects of fracture mechanics in the industrial application of polymers for bridging basic research and industrial development are illustrated by multifarious examples of innovative materials usage. This book will be of value to scientists, engineers and in polymer materials science.
Publisher: Springer
ISBN: 3319418793
Category : Technology & Engineering
Languages : en
Pages : 537
Book Description
This book covers the most recent advances in the deformation and fracture behaviour of polymer material. It provides deeper insight into related morphology–property correlations of thermoplastics, elastomers and polymer resins. Each chapter of this book gives a comprehensive review of state-of-the-art methods of materials testing and diagnostics, tailored for plastic pipes, films and adhesive systems as well as elastomeric components and others. The investigation of deformation and fracture behaviour using the experimental methods of fracture mechanics has been the subject of intense research during the last decade. In a systematic manner, modern aspects of fracture mechanics in the industrial application of polymers for bridging basic research and industrial development are illustrated by multifarious examples of innovative materials usage. This book will be of value to scientists, engineers and in polymer materials science.