Author: International Rice Research Institute
Publisher: Int. Rice Res. Inst.
ISBN: 9711040220
Category : Delphacidae
Languages : en
Pages : 377
Book Description
Brown Planthopper
Author: International Rice Research Institute
Publisher: Int. Rice Res. Inst.
ISBN: 9711040220
Category : Delphacidae
Languages : en
Pages : 377
Book Description
Publisher: Int. Rice Res. Inst.
ISBN: 9711040220
Category : Delphacidae
Languages : en
Pages : 377
Book Description
Plant Stress-Insect Interactions
Author: E. A. Heinrichs
Publisher: Wiley-Interscience
ISBN:
Category : Nature
Languages : en
Pages : 524
Book Description
Global food production and plant stress; Plant-mediated effects of soil mineral stresses on insects; Host plant suitability in relation to water stress; Influence of temperature-induced stress on host plant suitability to insects; Effects of electromagnetic radiation on insect-plant interactions; Plant stress from arthropods: insecticide and acaricide effects on insect, mite, and host plant biology; The effects of plant growth regulators and herbicides on host plant quality to insects; Insect populations on host plants subjected to air pollution; Effects of mechanical damage to plants on insect populations; Sensitivity of insect-damaged plants to environmental stresses; Plant-induced stressesas factors in natural enemy efficacy; Quality of diseased plants as hosts for insects; The dynamics of insect populations in crop systems subject to weed interference.
Publisher: Wiley-Interscience
ISBN:
Category : Nature
Languages : en
Pages : 524
Book Description
Global food production and plant stress; Plant-mediated effects of soil mineral stresses on insects; Host plant suitability in relation to water stress; Influence of temperature-induced stress on host plant suitability to insects; Effects of electromagnetic radiation on insect-plant interactions; Plant stress from arthropods: insecticide and acaricide effects on insect, mite, and host plant biology; The effects of plant growth regulators and herbicides on host plant quality to insects; Insect populations on host plants subjected to air pollution; Effects of mechanical damage to plants on insect populations; Sensitivity of insect-damaged plants to environmental stresses; Plant-induced stressesas factors in natural enemy efficacy; Quality of diseased plants as hosts for insects; The dynamics of insect populations in crop systems subject to weed interference.
Induced Responses to Herbivory
Author: Richard Karban
Publisher: University of Chicago Press
ISBN: 0226424979
Category : Science
Languages : en
Pages : 332
Book Description
Plants face a daunting array of creatures that eat them, bore into them, and otherwise use virtually every plant part for food, shelter, or both. But although plants cannot flee from their attackers, they are far from defenseless. In addition to adaptations like thorns, which may be produced in response to attack, plants actively alter their chemistry and physiology in response to damage. For instance, young potato plant leaves being eaten by potato beetles respond by producing chemicals that inhibit beetle digestive enzymes. Over the past fifteen years, research on these induced responses to herbivory has flourished, and here Richard Karban and Ian T. Baldwin present the first comprehensive evaluation and synthesis of this rapidly developing field. They provide state-of-the-discipline reviews and highlight areas where new research will be most productive. Their comprehensive overview will be welcomed by a wide variety of theoretical and applied researchers in ecology, evolutionary biology, plant biology, entomology, and agriculture.
Publisher: University of Chicago Press
ISBN: 0226424979
Category : Science
Languages : en
Pages : 332
Book Description
Plants face a daunting array of creatures that eat them, bore into them, and otherwise use virtually every plant part for food, shelter, or both. But although plants cannot flee from their attackers, they are far from defenseless. In addition to adaptations like thorns, which may be produced in response to attack, plants actively alter their chemistry and physiology in response to damage. For instance, young potato plant leaves being eaten by potato beetles respond by producing chemicals that inhibit beetle digestive enzymes. Over the past fifteen years, research on these induced responses to herbivory has flourished, and here Richard Karban and Ian T. Baldwin present the first comprehensive evaluation and synthesis of this rapidly developing field. They provide state-of-the-discipline reviews and highlight areas where new research will be most productive. Their comprehensive overview will be welcomed by a wide variety of theoretical and applied researchers in ecology, evolutionary biology, plant biology, entomology, and agriculture.
Physiology of Plants Under Stress
Author: David M. Orcutt
Publisher: John Wiley & Sons
ISBN: 9780471170082
Category : Science
Languages : en
Pages : 702
Book Description
This second of a two-part treatise describes the phenomena of plants under stress, describing the relationship between plant structure, development, and growth and such environmental stresses as too much or too little water, light, heat, or cold.
Publisher: John Wiley & Sons
ISBN: 9780471170082
Category : Science
Languages : en
Pages : 702
Book Description
This second of a two-part treatise describes the phenomena of plants under stress, describing the relationship between plant structure, development, and growth and such environmental stresses as too much or too little water, light, heat, or cold.
Plant-Microbe-Insect Interactions in Ecosystem Management and Agricultural Praxis
Author: Gero Benckiser
Publisher: Frontiers Media SA
ISBN: 2889458199
Category :
Languages : en
Pages : 531
Book Description
Nature’s high biomass productivity is based on biological N2 fixation (BNF) and biodiversity (Benckiser, 1997; Benckiser and Schnell, 2007). Although N2 makes up almost 80% of the atmosphere’s volume living organisms need it in only small quantities, presumably due to the paucity of natural ways of transforming this recalcitrant dinitrogen into reactive compounds. N shortage is commonly the most important limiting factor in crop production. The synthesis of ammonium from nitrogen and hydrogen, the Haber–Bosch (H-B) process, invented more than 100 years ago, became the holy grail of synthetic inorganic chemistry and removed the most ubiquitous limit on crop yields. H-B opened the way for the development and adoption of high-yielding cultivars, for monoculturing by organic and precision farming. With N over fertilization and pesticide application monoculturing farmers could approach Nature’s high biomass productivity by causing side effects the scientific world is investigating. This eBook presents the complexity the scientific world is facing in in understanding the soil-microbe-plant-animal cooperation, the millions of taxonomically, phylogenetically, and metabolically diverse above-below-ground species, involved in shaping the ever-changing biogeochemical process patterns being of great significance for food production networks and yield stability. Because ecosystem management and agricultural praxis are still largely conducted in isolation, the aim of this Frontiers’ eBook is to gather and interconnect plant-microbe-insect interaction research of various disciplines, studied with a broad spectrum of modern physical-chemical, biochemical, and molecular biological, agronomical techniques. The goal of this Research Topic was to gain a better understanding of microbe-plant-insect compositions, functioning, interactions, health, fitness, and productivity.
Publisher: Frontiers Media SA
ISBN: 2889458199
Category :
Languages : en
Pages : 531
Book Description
Nature’s high biomass productivity is based on biological N2 fixation (BNF) and biodiversity (Benckiser, 1997; Benckiser and Schnell, 2007). Although N2 makes up almost 80% of the atmosphere’s volume living organisms need it in only small quantities, presumably due to the paucity of natural ways of transforming this recalcitrant dinitrogen into reactive compounds. N shortage is commonly the most important limiting factor in crop production. The synthesis of ammonium from nitrogen and hydrogen, the Haber–Bosch (H-B) process, invented more than 100 years ago, became the holy grail of synthetic inorganic chemistry and removed the most ubiquitous limit on crop yields. H-B opened the way for the development and adoption of high-yielding cultivars, for monoculturing by organic and precision farming. With N over fertilization and pesticide application monoculturing farmers could approach Nature’s high biomass productivity by causing side effects the scientific world is investigating. This eBook presents the complexity the scientific world is facing in in understanding the soil-microbe-plant-animal cooperation, the millions of taxonomically, phylogenetically, and metabolically diverse above-below-ground species, involved in shaping the ever-changing biogeochemical process patterns being of great significance for food production networks and yield stability. Because ecosystem management and agricultural praxis are still largely conducted in isolation, the aim of this Frontiers’ eBook is to gather and interconnect plant-microbe-insect interaction research of various disciplines, studied with a broad spectrum of modern physical-chemical, biochemical, and molecular biological, agronomical techniques. The goal of this Research Topic was to gain a better understanding of microbe-plant-insect compositions, functioning, interactions, health, fitness, and productivity.
Induced plant responses to microbes and insects
Author: Corné M. J. Pieterse
Publisher: Frontiers E-books
ISBN: 2889191907
Category :
Languages : en
Pages : 358
Book Description
Plants are members of complex communities and interact both with antagonists and beneficial organisms. An important question in plant defense-signaling research is how plants integrate signals induced by pathogens, insect herbivores and beneficial microbes into the most appropriate adaptive response. Molecular and genomic tools are now being used to uncover the complexity of the induced defense signaling networks that have evolved during the arms races between plants and the other organisms with which they intimately interact. To understand the functioning of the complex defense signaling network in nature, molecular biologists and ecologists have joined forces to place molecular mechanisms of induced plant defenses in an ecological perspective. In this Research Topic, we aim to provide an on-line, open-access snapshot of the current state of the art of the field of induced plant responses to microbes and insects, with a special focus on the translation of molecular mechanisms to ecology and vice versa.
Publisher: Frontiers E-books
ISBN: 2889191907
Category :
Languages : en
Pages : 358
Book Description
Plants are members of complex communities and interact both with antagonists and beneficial organisms. An important question in plant defense-signaling research is how plants integrate signals induced by pathogens, insect herbivores and beneficial microbes into the most appropriate adaptive response. Molecular and genomic tools are now being used to uncover the complexity of the induced defense signaling networks that have evolved during the arms races between plants and the other organisms with which they intimately interact. To understand the functioning of the complex defense signaling network in nature, molecular biologists and ecologists have joined forces to place molecular mechanisms of induced plant defenses in an ecological perspective. In this Research Topic, we aim to provide an on-line, open-access snapshot of the current state of the art of the field of induced plant responses to microbes and insects, with a special focus on the translation of molecular mechanisms to ecology and vice versa.
Salt Stress, Microbes, and Plant Interactions: Causes and Solution
Author: Mohd Sayeed Akhtar
Publisher: Springer Nature
ISBN: 9811388016
Category : Science
Languages : en
Pages : 306
Book Description
This book offers an overview of salt stress, which has a devastating effect on the yields of various agricultural crops around the globe. Excessive salts in soil reduce the availability of water, inhibit metabolic processes, and affect nutrient composition, osmotic balance, and hydraulic conductivity. Plants have developed a number of tolerance mechanisms, such as various compatible solutes, polyamines, reactive oxygen species and antioxidant defense mechanisms, ion transport and compartmentalization of injurious ions. The exploitation of genetic variation, use of plant hormones, mineral nutrients, soil microbe interactions, and other mechanical practices are of prime importance in agriculture, and as such have been the subject of multidisciplinary research. Covering both theoretical and practical aspects, the book provides essential physiological, ecological, biochemical, environmental and molecular information as well as perspectives for future research. It is a valuable resource for students, teachers and researchers and anyone interested in agronomy, ecology, stress physiology, environmental science, crop science and molecular biology.
Publisher: Springer Nature
ISBN: 9811388016
Category : Science
Languages : en
Pages : 306
Book Description
This book offers an overview of salt stress, which has a devastating effect on the yields of various agricultural crops around the globe. Excessive salts in soil reduce the availability of water, inhibit metabolic processes, and affect nutrient composition, osmotic balance, and hydraulic conductivity. Plants have developed a number of tolerance mechanisms, such as various compatible solutes, polyamines, reactive oxygen species and antioxidant defense mechanisms, ion transport and compartmentalization of injurious ions. The exploitation of genetic variation, use of plant hormones, mineral nutrients, soil microbe interactions, and other mechanical practices are of prime importance in agriculture, and as such have been the subject of multidisciplinary research. Covering both theoretical and practical aspects, the book provides essential physiological, ecological, biochemical, environmental and molecular information as well as perspectives for future research. It is a valuable resource for students, teachers and researchers and anyone interested in agronomy, ecology, stress physiology, environmental science, crop science and molecular biology.
Plant Signaling Molecules
Author: M. Iqbal R. Khan
Publisher: Woodhead Publishing
ISBN: 0128164522
Category : Technology & Engineering
Languages : en
Pages : 597
Book Description
Plant Signaling Molecule: Role and Regulation under Stressful Environments explores tolerance mechanisms mediated by signaling molecules in plants for achieving sustainability under changing environmental conditions. Including a wide range of potential molecules, from primary to secondary metabolites, the book presents the status and future prospects of the role and regulation of signaling molecules at physiological, biochemical, molecular and structural level under abiotic stress tolerance. This book is designed to enhance the mechanistic understanding of signaling molecules and will be an important resource for plant biologists in developing stress tolerant crops to achieve sustainability under changing environmental conditions. - Focuses on plant biology under stress conditions - Provides a compendium of knowledge related to plant adaptation, physiology, biochemistry and molecular responses - Identifies treatments that enhance plant tolerance to abiotic stresses - Illustrates specific physiological pathways that are considered key points for plant adaptation or tolerance to abiotic stresses
Publisher: Woodhead Publishing
ISBN: 0128164522
Category : Technology & Engineering
Languages : en
Pages : 597
Book Description
Plant Signaling Molecule: Role and Regulation under Stressful Environments explores tolerance mechanisms mediated by signaling molecules in plants for achieving sustainability under changing environmental conditions. Including a wide range of potential molecules, from primary to secondary metabolites, the book presents the status and future prospects of the role and regulation of signaling molecules at physiological, biochemical, molecular and structural level under abiotic stress tolerance. This book is designed to enhance the mechanistic understanding of signaling molecules and will be an important resource for plant biologists in developing stress tolerant crops to achieve sustainability under changing environmental conditions. - Focuses on plant biology under stress conditions - Provides a compendium of knowledge related to plant adaptation, physiology, biochemistry and molecular responses - Identifies treatments that enhance plant tolerance to abiotic stresses - Illustrates specific physiological pathways that are considered key points for plant adaptation or tolerance to abiotic stresses
Co-Evolution of Secondary Metabolites
Author: Jean-Michel Mérillon
Publisher: Springer
ISBN: 9783319963983
Category : Science
Languages : en
Pages : 973
Book Description
This Reference Work is devoted to plant secondary metabolites and their evolutionary adaptation to different hosts and pests. Secondary metabolites play an important biological role in plants’ defence against herbivores, abiotic stresses and pathogens, and they also attract beneficial organisms such as pollinators. In this work, readers will find a comprehensive review of the phytochemical diversity, modification and adaptation of secondary metabolites, and the consequences of their co-evolution with plant parasites, pollinators, and herbivores. Chapters from expert contributors are organised into twelve sections that collate the current knowledge in intra-/inter-specific diversity in plant secondary metabolites, changes in secondary metabolites during plants’ adaptation to different environmental conditions, and co-evolution of host-parasite metabolites. Among the twelve themed parts, readers will also discover expert analysis on the genetics and chemical ecology evolution of secondary metabolites, and particular attention is also given to allelochemicals, bioactive molecules in plant defence and the evolution of sensory perception in vertebrates. This reference work will appeal to students, researchers and professionals interested in the field of plant pathology, plant breeding, biotechnology, agriculture and phytochemistry.
Publisher: Springer
ISBN: 9783319963983
Category : Science
Languages : en
Pages : 973
Book Description
This Reference Work is devoted to plant secondary metabolites and their evolutionary adaptation to different hosts and pests. Secondary metabolites play an important biological role in plants’ defence against herbivores, abiotic stresses and pathogens, and they also attract beneficial organisms such as pollinators. In this work, readers will find a comprehensive review of the phytochemical diversity, modification and adaptation of secondary metabolites, and the consequences of their co-evolution with plant parasites, pollinators, and herbivores. Chapters from expert contributors are organised into twelve sections that collate the current knowledge in intra-/inter-specific diversity in plant secondary metabolites, changes in secondary metabolites during plants’ adaptation to different environmental conditions, and co-evolution of host-parasite metabolites. Among the twelve themed parts, readers will also discover expert analysis on the genetics and chemical ecology evolution of secondary metabolites, and particular attention is also given to allelochemicals, bioactive molecules in plant defence and the evolution of sensory perception in vertebrates. This reference work will appeal to students, researchers and professionals interested in the field of plant pathology, plant breeding, biotechnology, agriculture and phytochemistry.
Microbial Management of Plant Stresses
Author: Ajay Kumar
Publisher: Woodhead Publishing
ISBN: 0323859208
Category : Science
Languages : en
Pages : 282
Book Description
Microbial Management of Plant Stresses: Current Trends, Application and Challenges explores plant microbiota including isolated microbial communities that have been used to study the functional capacities, ecological structure and dynamics of the plant-microbe interaction with focus on agricultural crops. Presenting multiple examples and evidence of the potential genetic flexibility of microbial systems to counteract the climate induced stresses associated with their host as a part of indigenous system, this book presents strategies and approaches for improvement of microbiome. As climate changes have altered the global carbon cycling and ecological dynamics, the regular and periodic occurrences of severe salinity, drought, and heat stresses across the different regimes of the agro-ecological zones have put additional constraints on agricultural ecosystem to produce efficient foods and other derived products for rapidly growing world population through low cost and sustainable technology. Furthermore chemical amendments, agricultural inputs and other innovative technologies although may have fast results with fruitful effects for enhancing crop productivity but also have other ecological drawbacks and environmental issues and offer limited use opportunities. Microbial formulations and/or microbial consortia deploying two or multiple partners have been frequently used for mitigation of various stresses, however, field success is often variable and improvement Smart, knowledge-driven selection of microorganisms is needed as well as the use of suitable delivery approaches and formulations. Microbial Management of Plant Stresses: Current Trends, Application and Challenges presents the functional potential of plant microbiota to address current challenges in crop production addressing this urgent need to bring microbial innovations into practice. - Demonstrates microbial ecosystems as an indigenous system for improving plant growth, health and stress resilience - Covers all the novel aspects of microbial regulatory mechanism. Key challenges associated with microbial delivery and successful establishment for plant growth promotion and stress avoidance - Explores plant microbiome and the modulation of plant defense and ecological dynamics under stressed environment
Publisher: Woodhead Publishing
ISBN: 0323859208
Category : Science
Languages : en
Pages : 282
Book Description
Microbial Management of Plant Stresses: Current Trends, Application and Challenges explores plant microbiota including isolated microbial communities that have been used to study the functional capacities, ecological structure and dynamics of the plant-microbe interaction with focus on agricultural crops. Presenting multiple examples and evidence of the potential genetic flexibility of microbial systems to counteract the climate induced stresses associated with their host as a part of indigenous system, this book presents strategies and approaches for improvement of microbiome. As climate changes have altered the global carbon cycling and ecological dynamics, the regular and periodic occurrences of severe salinity, drought, and heat stresses across the different regimes of the agro-ecological zones have put additional constraints on agricultural ecosystem to produce efficient foods and other derived products for rapidly growing world population through low cost and sustainable technology. Furthermore chemical amendments, agricultural inputs and other innovative technologies although may have fast results with fruitful effects for enhancing crop productivity but also have other ecological drawbacks and environmental issues and offer limited use opportunities. Microbial formulations and/or microbial consortia deploying two or multiple partners have been frequently used for mitigation of various stresses, however, field success is often variable and improvement Smart, knowledge-driven selection of microorganisms is needed as well as the use of suitable delivery approaches and formulations. Microbial Management of Plant Stresses: Current Trends, Application and Challenges presents the functional potential of plant microbiota to address current challenges in crop production addressing this urgent need to bring microbial innovations into practice. - Demonstrates microbial ecosystems as an indigenous system for improving plant growth, health and stress resilience - Covers all the novel aspects of microbial regulatory mechanism. Key challenges associated with microbial delivery and successful establishment for plant growth promotion and stress avoidance - Explores plant microbiome and the modulation of plant defense and ecological dynamics under stressed environment