Role of Explainable Artificial Intelligence in E-Commerce

Role of Explainable Artificial Intelligence in E-Commerce PDF Author: Loveleen Gaur
Publisher: Springer Nature
ISBN: 3031556151
Category :
Languages : en
Pages : 141

Get Book Here

Book Description

Role of Explainable Artificial Intelligence in E-Commerce

Role of Explainable Artificial Intelligence in E-Commerce PDF Author: Loveleen Gaur
Publisher: Springer Nature
ISBN: 3031556151
Category :
Languages : en
Pages : 141

Get Book Here

Book Description


Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges PDF Author: I. Tiddi
Publisher: IOS Press
ISBN: 1643680811
Category : Computers
Languages : en
Pages : 314

Get Book Here

Book Description
The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.

Explanatory Model Analysis

Explanatory Model Analysis PDF Author: Przemyslaw Biecek
Publisher: CRC Press
ISBN: 0429651376
Category : Business & Economics
Languages : en
Pages : 327

Get Book Here

Book Description
Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.

Explainable Artificial Intelligence and Solar Energy Integration

Explainable Artificial Intelligence and Solar Energy Integration PDF Author: Pandey, Jay Kumar
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 506

Get Book Here

Book Description
As sustainable energy becomes the future, integrating solar power into existing systems presents critical challenges. Intelligent solutions are required to optimize energy production while maintaining transparency, reliability, and trust in decision-making processes. The growing complexity of these systems calls for advanced technologies that can ensure efficiency while addressing the unique demands of renewable energy sources. Explainable Artificial Intelligence and Solar Energy Integration explores how Explainable AI (XAI) enhances transparency in AI-driven solutions for solar energy integration. By showcasing XAI's role in improving energy efficiency and sustainability, the book bridges the gap between AI potential and real-world solar energy applications. It serves as a comprehensive resource for researchers, engineers, policymakers, and students, offering both technical insights and practical case studies.

Responsible Implementations of Generative AI for Multidisciplinary Use

Responsible Implementations of Generative AI for Multidisciplinary Use PDF Author: Gaur, Loveleen
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 472

Get Book Here

Book Description
Generative artificial intelligence (GAI) represents a profound leap in technological advancement, empowering machines to create content that closely mimics human creativity in various forms. As this technology continues to evolve and permeate multiple industries, it is essential to address the accompanying ethical considerations that arise from its use. Furthermore, there is a need for transparency in how GAI systems are developed and deployed to ensure that they are used responsibly and that their outputs are reliable and fair. Balancing innovation with ethical practices will be crucial to harnessing the benefits of GAI while mitigating its risks and ensuring its positive contribution to society. Responsible Implementations of Generative AI for Multidisciplinary Use highlights both the immense potential of GAI and the ethical challenges it presents. This book demystifies GAI by breaking down complex concepts into accessible language and offering real-world examples that illustrate the implications of its applications. Covering topics such as chatbots, ethical leadership, and the metaverse, this book is an excellent resource for technology professionals and developers, ethicists, policymakers, academicians, researchers, business leaders and executives, legal experts, students, educators, and more.

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning PDF Author: Wojciech Samek
Publisher: Springer Nature
ISBN: 3030289540
Category : Computers
Languages : en
Pages : 435

Get Book Here

Book Description
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

Artificial Intelligence

Artificial Intelligence PDF Author: Harvard Business Review
Publisher: HBR Insights
ISBN: 9781633697898
Category : Business & Economics
Languages : en
Pages : 160

Get Book Here

Book Description
Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business.

Strategies for E-Commerce Data Security: Cloud, Blockchain, AI, and Machine Learning

Strategies for E-Commerce Data Security: Cloud, Blockchain, AI, and Machine Learning PDF Author: Goel, Pawan Kumar
Publisher: IGI Global
ISBN:
Category : Business & Economics
Languages : en
Pages : 689

Get Book Here

Book Description
In the landscape of e-commerce, data security has become a concern as businesses navigate the complexities of sensitive customer information protection and cyber threat mitigation. Strategies involving cloud computing, blockchain technology, artificial intelligence, and machine learning offer solutions to strengthen data security and ensure transactional integrity. Implementing these technologies requires a balance of innovation and efficient security protocols. The development and adoption of security strategies is necessary to positively integrate cutting-edge technologies for effective security in online business. Strategies for E-Commerce Data Security: Cloud, Blockchain, AI, and Machine Learning addresses the need for advanced security measures, while examining the current state of e-commerce data security. It explores strategies such as cloud computing, blockchain, artificial intelligence, and machine learning. This book covers topics such as cybersecurity, cloud technology, and forensics, and is a useful resource for computer engineers, business owners, security professionals, government officials, academicians, scientists, and researchers.

Interpretable Machine Learning

Interpretable Machine Learning PDF Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320

Get Book Here

Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Big Data and Global Trade Law

Big Data and Global Trade Law PDF Author: Mira Burri
Publisher: Cambridge University Press
ISBN: 110884359X
Category : Business & Economics
Languages : en
Pages : 407

Get Book Here

Book Description
An exploration of the current state of global trade law in the era of Big Data and AI. This title is also available as Open Access on Cambridge Core.