Robust and Adaptive Control Methods for Small Aerial Vehicles

Robust and Adaptive Control Methods for Small Aerial Vehicles PDF Author: Prasenjit Mukherjee
Publisher:
ISBN:
Category :
Languages : en
Pages : 86

Get Book Here

Book Description
Recent advances in sensor and microcomputer technology and in control and aeroydynamics theories has made small unmanned aerial vehicles a reality. The small size, low cost and manoueverbility of these systems has positioned them to be potential solutions in a large class of applications. However, the small size of these vehicles pose significant challenges. The small sensors used on these systems are much noisier than their larger counterparts. The compact structure of these vehicles also makes them more vulnerable to environmental effects. This work develops several different control strategies for two sUAV platforms and provides the rationale for judging each of the controllers based on a derivation of the dynamics, simulation studies and experimental results where possible. First, the coaxial helicopter platform is considered. This sUAV's dual rotor system (along with its stabilizer bar technology) provides the ideal platform for safe, stable flight in a compact form factor. However, the inherent stability of the vehicle is achieved at the cost of weaker control authority and therefore an inability to achieve aggressive trajectories especially when faced with heavy wind disturbances. Three different linear control strategies are derived for this platform. PID, LQR and H[infin] methods are tested in simulation studies. While the PID method is simple and intuitive, the LQR method is better at handling the decoupling required in the system. However the frequency domain design of the H[infin] control method is better at suppressing disturbances and tracking more aggressive trajectories. The dynamics of the quadrotor are much faster than those of the coaxial helicopter. In the quadrotor, four independent fixed pitch rotors provide the required thrust. Differences between each of the rotors creates moments in the roll, pitch and yaw directions. This system greatly simplifies the mechanical complexity of the UAV, making quadrotors cheaper to maintain and more accessible. The quadrotor dynamics are derived in this work. Due to the lack of any mechanical stabilization system, these quadrotor dynamics are not inherently damped around hover. As such, the focus of the controller development is on using nonlinear techniques. Linear quadratic regulation methods are derived and shown to be inadequate when used in zones moderately outside hover. Within nonlinear methods, feedback linearization techniques are developed for the quadrotor using an inner/outer loop decoupling structure that avoids more complex variants of the feedback linearization methodology. Most nonlinear control methods (including feedback linearization) assume perfect knowledge of vehicle parameters. In this regard, simulation studies show that when this assumption is violated the results of the flight significantly deteriorate for quadrotors flying using the feedback linearization method. With this in mind, an adaptation law is devised around the nonlinear control method that actively modifies the plant parameters in an effort to drive tracking errors to zero. In simple cases with sufficiently rich trajectory requirements the parameters are able to adapt to the correct values (as verified by simulation studies). It can also adapt to changing parameters in flight to ensure that vehicle stability and controller performance is not compromised. However, the direct adaptive control method devised in this work has the added benefit of being able to modify plant parameters to suppress the effects of external disturbances as well. This is clearly shown when wind disturbances are applied to the quadrotor simulations. Finally, the nonlinear quadrotor controllers devised above are tested on a custom built quadrotor and autopilot platform. While the custom quadrotor is able to fly using the standard control methods, the specific controllers devised here are tested on a test bench that constrains the movement of the vehicle. The results of the tests show that the controller is able to sufficiently change the necessary parameter to ensure effective tracking in the presence of unmodelled disturbances and measurement error.

Robust and Adaptive Control Methods for Small Aerial Vehicles

Robust and Adaptive Control Methods for Small Aerial Vehicles PDF Author: Prasenjit Mukherjee
Publisher:
ISBN:
Category :
Languages : en
Pages : 86

Get Book Here

Book Description
Recent advances in sensor and microcomputer technology and in control and aeroydynamics theories has made small unmanned aerial vehicles a reality. The small size, low cost and manoueverbility of these systems has positioned them to be potential solutions in a large class of applications. However, the small size of these vehicles pose significant challenges. The small sensors used on these systems are much noisier than their larger counterparts. The compact structure of these vehicles also makes them more vulnerable to environmental effects. This work develops several different control strategies for two sUAV platforms and provides the rationale for judging each of the controllers based on a derivation of the dynamics, simulation studies and experimental results where possible. First, the coaxial helicopter platform is considered. This sUAV's dual rotor system (along with its stabilizer bar technology) provides the ideal platform for safe, stable flight in a compact form factor. However, the inherent stability of the vehicle is achieved at the cost of weaker control authority and therefore an inability to achieve aggressive trajectories especially when faced with heavy wind disturbances. Three different linear control strategies are derived for this platform. PID, LQR and H[infin] methods are tested in simulation studies. While the PID method is simple and intuitive, the LQR method is better at handling the decoupling required in the system. However the frequency domain design of the H[infin] control method is better at suppressing disturbances and tracking more aggressive trajectories. The dynamics of the quadrotor are much faster than those of the coaxial helicopter. In the quadrotor, four independent fixed pitch rotors provide the required thrust. Differences between each of the rotors creates moments in the roll, pitch and yaw directions. This system greatly simplifies the mechanical complexity of the UAV, making quadrotors cheaper to maintain and more accessible. The quadrotor dynamics are derived in this work. Due to the lack of any mechanical stabilization system, these quadrotor dynamics are not inherently damped around hover. As such, the focus of the controller development is on using nonlinear techniques. Linear quadratic regulation methods are derived and shown to be inadequate when used in zones moderately outside hover. Within nonlinear methods, feedback linearization techniques are developed for the quadrotor using an inner/outer loop decoupling structure that avoids more complex variants of the feedback linearization methodology. Most nonlinear control methods (including feedback linearization) assume perfect knowledge of vehicle parameters. In this regard, simulation studies show that when this assumption is violated the results of the flight significantly deteriorate for quadrotors flying using the feedback linearization method. With this in mind, an adaptation law is devised around the nonlinear control method that actively modifies the plant parameters in an effort to drive tracking errors to zero. In simple cases with sufficiently rich trajectory requirements the parameters are able to adapt to the correct values (as verified by simulation studies). It can also adapt to changing parameters in flight to ensure that vehicle stability and controller performance is not compromised. However, the direct adaptive control method devised in this work has the added benefit of being able to modify plant parameters to suppress the effects of external disturbances as well. This is clearly shown when wind disturbances are applied to the quadrotor simulations. Finally, the nonlinear quadrotor controllers devised above are tested on a custom built quadrotor and autopilot platform. While the custom quadrotor is able to fly using the standard control methods, the specific controllers devised here are tested on a test bench that constrains the movement of the vehicle. The results of the tests show that the controller is able to sufficiently change the necessary parameter to ensure effective tracking in the presence of unmodelled disturbances and measurement error.

Robust and Adaptive Control

Robust and Adaptive Control PDF Author: Eugene Lavretsky
Publisher: Springer Science & Business Media
ISBN: 1447143965
Category : Technology & Engineering
Languages : en
Pages : 506

Get Book Here

Book Description
Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems. The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: · case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; · detailed background material for each chapter to motivate theoretical developments; · realistic examples and simulation data illustrating key features of the methods described; and · problem solutions for instructors and MATLAB® code provided electronically. The theoretical content and practical applications reported address real-life aerospace problems, being based on numerous transitions of control-theoretic results into operational systems and airborne vehicles that are drawn from the authors’ extensive professional experience with The Boeing Company. The systems covered are challenging, often open-loop unstable, with uncertainties in their dynamics, and thus requiring both persistently reliable control and the ability to track commands either from a pilot or a guidance computer. Readers are assumed to have a basic understanding of root locus, Bode diagrams, and Nyquist plots, as well as linear algebra, ordinary differential equations, and the use of state-space methods in analysis and modeling of dynamical systems. Robust and Adaptive Control is intended to methodically teach senior undergraduate and graduate students how to construct stable and predictable control algorithms for realistic industrial applications. Practicing engineers and academic researchers will also find the book of great instructional value.

Robust Adaptive Control

Robust Adaptive Control PDF Author: Petros Ioannou
Publisher: Courier Corporation
ISBN: 0486320723
Category : Technology & Engineering
Languages : en
Pages : 850

Get Book Here

Book Description
Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.

Adaptive Control of Unmanned Aerial Systems

Adaptive Control of Unmanned Aerial Systems PDF Author: Zachary Thompson Dydek
Publisher:
ISBN:
Category :
Languages : en
Pages : 139

Get Book Here

Book Description
Adaptive control is considered to be one of the key enabling technologies for future high-performance, safety-critical systems such as air-breathing hypersonic vehicles. Adaptive flight control systems offer improved performance and increased robustness to uncertainties by virtue of their ability to adjust control parameters as a function of online measurements. Extensive research in the field of adaptive control theory has enabled the design, analysis, and synthesis of stable adaptive systems. We are now entering the stage in which adaptive flight control systems have reached the requisite level of maturity for application to hardware flight platforms. Unmanned aerial systems (UAS) provide a unique opportunity for the transition of adaptive controllers from theory to practice. The small, unmanned aerial vehicles (UAVs) examined in this thesis offer a low-cost, low-risk stepping stone between simulation and application to higher-risk systems in which safety is a critical concern. Unmanned aircraft also offer several benefits over their manned counterparts including extreme persistence, maneuverability, lower weight and smaller size. Furthermore, several missions such as surveillance, exploration, search-and-track, and lifting of heavy loads are best accomplished by a UAS consisting of multiple UAVs. This thesis addresses some of the challenges involved with the application of adaptive flight control systems to UAS. Novel adaptive control architectures are developed to overcome performance limitations of UAS, the most significant of which is a large time delay due to communication and limited onboard processing. Analytical tools that allow the calculation of a theoretically justified time delay limit are also developed. These tools in turn lead to an estimate of the time-delay margin of the closed-loop system which is an essential part of the validation and verification methodology for intelligent flight control systems. These approaches are validated numerically using a series of simulation studies. These controllers and analytical methods are then applied to the UAV, demonstrating improved performance and increased robustness to time delays. Also introduced in this thesis is a novel adaptive methodology for coordinated adaptive control of a multi-vehicle UAS. Including two distinct classes of adaptive algorithms at both the local and global levels was found to result, both in simulation and in actual flight 3 tests, in decreased tracking error for individual vehicles, decreased errors in intervehicle distances, and reduced likelihood of collisions with other vehicles or obstacles in the environment.

State Estimation and Control for Low-cost Unmanned Aerial Vehicles

State Estimation and Control for Low-cost Unmanned Aerial Vehicles PDF Author: Chingiz Hajiyev
Publisher: Springer
ISBN: 3319164171
Category : Technology & Engineering
Languages : en
Pages : 239

Get Book Here

Book Description
This book discusses state estimation and control procedures for a low-cost unmanned aerial vehicle (UAV). The authors consider the use of robust adaptive Kalman filter algorithms and demonstrate their advantages over the optimal Kalman filter in the context of the difficult and varied environments in which UAVs may be employed. Fault detection and isolation (FDI) and data fusion for UAV air-data systems are also investigated, and control algorithms, including the classical, optimal, and fuzzy controllers, are given for the UAV. The performance of different control methods is investigated and the results compared. State Estimation and Control of Low-Cost Unmanned Aerial Vehicles covers all the important issues for designing a guidance, navigation and control (GNC) system of a low-cost UAV. It proposes significant new approaches that can be exploited by GNC system designers in the future and also reviews the current literature. The state estimation, control and FDI methods are illustrated by examples and MATLAB® simulations. State Estimation and Control of Low-Cost Unmanned Aerial Vehicles will be of interest to both researchers in academia and professional engineers in the aerospace industry. Graduate students may also find it useful, and some sections are suitable for an undergraduate readership.

Robust and Adaptive Control Laws for a Mini Quad Rotor UAV

Robust and Adaptive Control Laws for a Mini Quad Rotor UAV PDF Author: Elisa Capello
Publisher: LAP Lambert Academic Publishing
ISBN: 9783838353067
Category :
Languages : en
Pages : 176

Get Book Here

Book Description
Different control laws have been analyzed, from the classical theory, like PD and LQR controllers, to an innovative theory, that is represented by the L1 adaptive controller. The validation of controllers is proposed on the experimental model (derived from flight tests) and in a formation flight application. A quadrotor is a platform with fast dynamics, thus if a sudden maneuver is implemented can cause glitches on the parameters trend and the aircraft could become uncontrollable. A key aspect of this controller is the definition of control signals as the output of a low pass-filter. This feature permits to avoid high frequency oscillations due to the large adaptation gain; in systems that use electronic devices. Moreover, this controller is robust in presence of model uncertainties and unmodeled dynamics. The simple structure and the presence of less oscillations during the implementation demonstrate that this controller can be a good candidate for an autopilot. Therefore, the low pass filter is evaluated by a trial and error method. To provide a systematic method, a mixed deterministic - randomized approach for the control law design (low pass filter) is proposed.

Robust Adaptive Control in the Presence of Unmodeled Dynamics

Robust Adaptive Control in the Presence of Unmodeled Dynamics PDF Author: Heather Syeda Hussain
Publisher:
ISBN:
Category :
Languages : en
Pages : 131

Get Book Here

Book Description
With the advent of each next generation technology, demands for a rapidly reconfigurable control system yielding invariant performance under increasingly unknown or widely varying operating conditions becomes crucial. Adaptive control has long been viewed as one such control method, with implementation on high performance aerial vehicles providing nearly uniform performance across the flight envelope even with limited a priori knowledge on the aircraft's aerodynamic characteristics. This adaptation to parametric uncertainties is achieved through a process of online measurement, evaluation, and compensation through the control input. While the foundations of robust adaptive control theory were laid in the early 1980's, obtaining quantifiable and practically meaningful robust stability margins for adaptive systems remained an open problem. Successful implementation of adaptive control theory as a viable control solution can only be achieved when global robustness properties, especially with respect to unmodeled dynamics, are well understood. This thesis proposes a solution to this long standing open problem for a class of linear time-invariant plants, whose states are accessible. With the use of a modified adaptive update law, transformation of tracking and parameter errors, and sufficient conditions of a frequency-domain criterion, it is shown that the underlying closed-loop system has globally bounded solutions. That is, the overall adaptive system is shown to have analytically computable robustness margins that hold for arbitrary initial conditions. The proposed method and analysis utilizes several key properties of nonlinear dynamic systems, first principles of real analysis, and properties of strictly positive real systems to derive this fundamental result. Numerical results are presented to demonstrate that the sufficient conditions for global boundedness are non-conservative. It is also shown that, with these global properties established, specific conditions can be derived under which the advantage of adaptation over non-adaptive solutions for the control of uncertain systems is made clear. This advantage lies in the fact parameter adaptation allows learning of the uncertainties whenever the effect of unmodeled dynamics is small, leading to small tracking errors and improved robustness margins.

Fault-tolerant Flight Control and Guidance Systems

Fault-tolerant Flight Control and Guidance Systems PDF Author: Guillaume J. J. Ducard
Publisher: Springer Science & Business Media
ISBN: 1848825617
Category : Technology & Engineering
Languages : en
Pages : 268

Get Book Here

Book Description
This book offers a complete overview of fault-tolerant flight control techniques. Discussion covers the necessary equations for the modeling of small UAVs, a complete system based on extended Kalman filters, and a nonlinear flight control and guidance system.

Robust Formation Control for Multiple Unmanned Aerial Vehicles

Robust Formation Control for Multiple Unmanned Aerial Vehicles PDF Author: Hao Liu
Publisher: CRC Press
ISBN: 1000788539
Category : Technology & Engineering
Languages : en
Pages : 180

Get Book Here

Book Description
This book is based on the authors’ recent research results on formation control problems, including time-varying formation, communication delays, fault-tolerant formation for multiple UAV systems with highly nonlinear and coupled, parameter uncertainties, and external disturbances. Differentiating from existing works, this book presents a robust optimal formation approach to designing distributed cooperative control laws for a group of UAVs, based on the linear quadratic regulator control method and the robust compensation theory. The proposed control method is composed of two parts: the nominal part to achieve desired tracking performance and the robust compensation part to restrain the influence of highly nonlinear and strongly coupled parameter uncertainties, and external disturbances on the global closed-loop control system. Furthermore, this book gives proof of their robust properties. The influence of communication delays and actuator fault tolerance can be restrained by the proposed robust formation control protocol, and the formation tracking errors can converge into a neighborhood of the origin bounded by a given constant in a finite time. Moreover, the book provides details about the practical application of the proposed method to design formation control systems for multiple quadrotors and tail-sitters. Additional features include a robust control method that is proposed to address the formation control problem for UAVs and theoretical and experimental research for the cooperative flight of the quadrotor UAV group and the tail-sitter UAV group. Robust Formation Control for Multiple Unmanned Aerial Vehicles is suitable for graduate students, researchers, and engineers in the system and control community, especially those engaged in the areas of robust control, UAV swarming, and multi-agent systems.

Intelligent Adaptive Control for Nonlinear Applications

Intelligent Adaptive Control for Nonlinear Applications PDF Author: Shaaban Ali Salman Ali
Publisher:
ISBN:
Category : Adaptive control systems
Languages : en
Pages : 168

Get Book Here

Book Description
The thesis deals with the design and implementation of an Adaptive Flight Control technique for Unmanned Aerial Vehicles (UAVs). The application of UAVs has been increasing exponentially in the last decade both in Military and Civilian fronts. These UAVs fly at very low speeds and Reynolds numbers, have nonlinear coupling, and tend to exhibit time varying characteristics. In addition, due to the variety of missions, they fly in uncertain environments exposing themselves to unpredictable external disturbances. The successful completion of the UAV missions is largely dependent on the accuracy of the control provided by the flight controllers. Thus there is a necessity for accurate and robust flight controllers. These controllers should be able to adapt to the changes in the dynamics due to internal and external changes. From the available literature, it is known that, one of the better suited adaptive controllers is the model based controller. The design and implementation of model based adaptive controller is discussed in the thesis. A critical issue in the design and application of model based control is the online identification of the UAV dynamics from the available sensors using the onboard processing capability. For this, proper instrumentation in terms of sensors and avionics for two platforms developed at UNSW@ADFA is discussed. Using the flight data from the remotely flown platforms, state space identification and fuzzy identification are developed to mimic the UAV dynamics. Real time validations using Hardware in Loop (HIL) simulations show that both the methods are feasible for control. A finer comparison showed that the accuracy of identification using fuzzy systems is better than the state space technique. The flight tests with real time online identification confirmed the feasibility of fuzzy identification for intelligent control. Hence two adaptive controllers based on the fuzzy identification are developed. The first adaptive controller is a hybrid indirect adaptive controller that utilises the model sensitivity in addition to output error for adaptation. The feedback of the model sensitivity function to adapt the parameters of the controller is shown to have beneficial effects, both in terms of convergence and accuracy. HIL simulations applied to the control of roll stabilised pitch autopilot for a typical UAV demonstrate the improvements compared to the direct adaptive controller. Next a novel fuzzy model based inversion controller is presented. The analytical approximate inversion proposed in this thesis does not increase the computational effort. The comparisons of this controller with other controller for a benchmark problem are presented using numerical simulations. The results bring out the superiority of this technique over other techniques. The extension of the analytical inversion based controller for multiple input multiple output problem is presented for the design of roll stabilised pitch autopilot for a UAV. The results of the HIL simulations are discussed for a typical UAV. Finally, flight test results for angle of attack control of one of the UAV platforms at UNSW@ADFA are presented. The flight test results show that the adaptive controller is capable of controlling the UAV suitably in a real environment, demonstrating its robustness characteristics.