Risk-Based Asset Management Framework for Water Distribution Systems

Risk-Based Asset Management Framework for Water Distribution Systems PDF Author: Ram Krishna Mazumder
Publisher:
ISBN:
Category : Civil engineering
Languages : en
Pages : 330

Get Book Here

Book Description
Water Distribution Systems (WDSs) are the most essential civil infrastructure systems for the functioning of communities. Economic prosperity and social wellbeing of modern society depend on reliable, robust, and resilient WDSs. Unfortunately, a majority of water pipelines in the United States (U.S.) are in service beyond their intended design life and have experienced a high failure rate. Aged metallic pipelines are susceptible to failure due to corrosion deterioration, traffic loading, excessive water pressure, seismic loading, and other factors. These failures result in enormous direct and indirect economic and societal consequences. Moreover, water pipe failures often lead to cascading consequences to other interconnecting infrastructure, especially road networks. In the face of these frequent failures, water utilities are struggling to maintain their assets with limited budget and resource constraints. There is a clear need to develop a comprehensive framework to assess and mitigate the risk posed by combined external loading (e.g., water pressure, traffic loading, earthquakes) and corrosion deterioration to WDSs. This research presents a risk-based asset management decision-support framework for WDSs subjected to combined corrosion and external loading, considering both component-level and system-level risk. A critical literature review of existing literature on various aspects of asset management is performed to establish the knowledge gap between current practice and theory in WDS research. Various fragility models of pipelines and systems are developed considering the effect of corrosion deterioration. Uncertainties involved in fragility and restoration models are accounted for using the probabilistic approaches. The seismic restoration process is modeled considering the repair activities overtimes. Next, a framework is proposed that incorporates topological and hydraulic reliability model, seismic functionality and resilience model, scenario-based seismic damage and renewal cost analysis, post-disaster repair sequence model, and risk-based decision tools. The framework developed in this research is intended to support water utilities in long term asset management and investment decisions. Although this approach is presented for WDSs, the proposed asset management framework can be applied to other types of networked systems.

Risk-Based Asset Management Framework for Water Distribution Systems

Risk-Based Asset Management Framework for Water Distribution Systems PDF Author: Ram Krishna Mazumder
Publisher:
ISBN:
Category : Civil engineering
Languages : en
Pages : 330

Get Book Here

Book Description
Water Distribution Systems (WDSs) are the most essential civil infrastructure systems for the functioning of communities. Economic prosperity and social wellbeing of modern society depend on reliable, robust, and resilient WDSs. Unfortunately, a majority of water pipelines in the United States (U.S.) are in service beyond their intended design life and have experienced a high failure rate. Aged metallic pipelines are susceptible to failure due to corrosion deterioration, traffic loading, excessive water pressure, seismic loading, and other factors. These failures result in enormous direct and indirect economic and societal consequences. Moreover, water pipe failures often lead to cascading consequences to other interconnecting infrastructure, especially road networks. In the face of these frequent failures, water utilities are struggling to maintain their assets with limited budget and resource constraints. There is a clear need to develop a comprehensive framework to assess and mitigate the risk posed by combined external loading (e.g., water pressure, traffic loading, earthquakes) and corrosion deterioration to WDSs. This research presents a risk-based asset management decision-support framework for WDSs subjected to combined corrosion and external loading, considering both component-level and system-level risk. A critical literature review of existing literature on various aspects of asset management is performed to establish the knowledge gap between current practice and theory in WDS research. Various fragility models of pipelines and systems are developed considering the effect of corrosion deterioration. Uncertainties involved in fragility and restoration models are accounted for using the probabilistic approaches. The seismic restoration process is modeled considering the repair activities overtimes. Next, a framework is proposed that incorporates topological and hydraulic reliability model, seismic functionality and resilience model, scenario-based seismic damage and renewal cost analysis, post-disaster repair sequence model, and risk-based decision tools. The framework developed in this research is intended to support water utilities in long term asset management and investment decisions. Although this approach is presented for WDSs, the proposed asset management framework can be applied to other types of networked systems.

Risk Management for Water and Wastewater Utilities

Risk Management for Water and Wastewater Utilities PDF Author: Simon Pollard
Publisher: IWA Publishing
ISBN: 1780407475
Category : Science
Languages : en
Pages : 180

Get Book Here

Book Description
Water risks and security are a major global hazard in the 21st century and it is essential that water professionals have a solid grounding in the principles of preventative risk management. This second edition of the key textbook, Risk Management for Water and Wastewater Utilities, extends beyond first principles and examines the practicalities of resilience and vulnerability assessment, strategic risk appraisal and the interconnectedness of water utility risks in a networked infrastructure. It provides an up-dated overview of tools and techniques for risk management in the context of the heightened expectations for sound risk governance that are being made of all water and wastewater utilities. Risk Management for Water and Wastewater Utilities provides a valuable starting point for newly appointed risk managers in the utility sector and offers MSc level self-paced study with self-assessment questions and abbreviated answers, key learning points, case studies and worked examples.

Strategic Asset Management of Water Supply and Wastewater Infrastructures

Strategic Asset Management of Water Supply and Wastewater Infrastructures PDF Author: Helena Alegre
Publisher: IWA Publishing
ISBN: 1843391864
Category : Science
Languages : en
Pages : 553

Get Book Here

Book Description
Water and Wastewater companies operating all around the world have faced rising asset management and replacement costs, often to levels that are financially unsustainable. Management of investment needs, while meeting regulatory and other goals, has required: A better understanding of what customers demand from the services they pay for, and the extent to which they are willing to pay for improvements or be compensated for a reduction in performance Development of models to predict asset failure and to identify and concentrate investment on critical assets Improved management systems Improved accounting for costs and benefits and their incorporation within an appropriate cost-benefit framework Incorporation of risk management techniques Utilisation of advanced maintenance techniques including new rehabilitation failure detection technologies Enhancements in pipeline materials, technologies and laying techniques. These papers developed from LESAM 2007 for inclusion in Strategic Asset Management of Water Supply and Wastewater Infrastructures are focused on the techniques, technologies and management approaches aiming at optimising the investment in infrastructure while achieving demanded customer service standards, and they provide an opportunity to gain access to the latest discussion and developments at the leading-edge in this field. This book will be essential reading for utility operators and managers, regulators and consultants.

Risk-based Asset Management of Potable Water Distribution Systems

Risk-based Asset Management of Potable Water Distribution Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 89

Get Book Here

Book Description


Routledge Handbook of Sustainable and Resilient Infrastructure

Routledge Handbook of Sustainable and Resilient Infrastructure PDF Author: Paolo Gardoni
Publisher: Routledge
ISBN: 1351392778
Category : Business & Economics
Languages : en
Pages : 951

Get Book Here

Book Description
To best serve current and future generations, infrastructure needs to be resilient to the changing world while using limited resources in a sustainable manner. Research on and funding towards sustainability and resilience are growing rapidly, and significant research is being carried out at a number of institutions and centers worldwide. This handbook brings together current research on sustainable and resilient infrastructure and, in particular, stresses the fundamental nexus between sustainability and resilience. It aims to coalesce work from a large and diverse group of contributors across a wide range of disciplines including engineering, technology and informatics, urban planning, public policy, economics, and finance. Not only does it present a theoretical formulation of sustainability and resilience but it also demonstrates how these ideals can be realized in practice. This work will provide a reference text to students and scholars of a number of disciplines.

Water Safety Plan Manual

Water Safety Plan Manual PDF Author: World Health Organization
Publisher: World Health Organization
ISBN: 9241562633
Category : Drinking water
Languages : en
Pages : 109

Get Book Here

Book Description
In 2004, the WHO Guidelines for Drinking Water Quality recommended that water suppliers develop and implement "Water Safety Plans" (WSPs) in order to systematically assess and manage risks. Since this time, governments and regulators, water suppliers and practitioners have increasingly embraced this approach, but they have also requested further guidance. This much-anticipated workbook answers this call by describing how to develop and implement a WSP in clear and practical terms. Stepwise advice is provided through 11 learning modules, each representing a key step in the WSP development and implementation process: 1. Assemble the WSP team; 2. Describe the water supply system; 3. Identify hazards and hazardous events and assess the risks; 4. Determine and validate control measures, reassess and prioritise the risks; 5. Develop, implement and maintain an improvement/upgrade plan; 6. Define monitoring of the control measures; 7. Verify the effectiveness of the WSP; 8. Prepare management procedures; 9. Develop supporting programmes; 10. Plan and carry out periodic review of the WSP; 11. Revise the WSP following an incident ; Every Module is divided into three sections: 'Overview', 'Examples and Tools', and 'Case studies'. The overview section provides a brief introduction to the Module, including why it is important and how it fits into the overall WSP development and implementation process. It outlines key activities that should be carried out, lists typical challenges that may be encountered, and summarizes the essential outputs to be produced. The examples and tools section provides resources which could be adapted to support the development and implementation of WSPs. These resources include example tables and checklists, template forms, diagrams, or practical tips to help a WSP team address specific challenges. These are often example outputs and methodologies adapted from recent WSP experiences. Each Module concludes with case studies so the reader can benefit from lessons-learned from real-life experiences. They are intended to make WSP concepts more concrete and to help readers anticipate issues and challenges that may arise. The descriptions were drawn from WSP initiatives in Australia, the Latin American and the Caribbean region (LAC), and the United Kingdom.

Asset Management Tools for Sustainable Water Distribution Networks

Asset Management Tools for Sustainable Water Distribution Networks PDF Author: Zahra Zangenehmadar
Publisher:
ISBN:
Category :
Languages : en
Pages : 220

Get Book Here

Book Description
Water Distribution Network (WDN) is the most important element in water supply systems. According to the Canadian Water and Wastewater Association (CWWA), there are more than 112,000 kilometers of water mains in Canada and their replacement cost is estimated to be $34 billion. Since majority of pipelines are frequently above 100 years old, they are prone to failure and outbreaks of disease derivable to drinking water are inevitable. Breakage in water infrastructure can result in disruptions and damage to other surrounding infrastructure such as road networks or structures. Moreover, unscheduled emergency rehabilitation works can cause interruption to traffic, households and businesses. Therefore, it is important to assess the unknown condition of WDNs to find their respective rate of deterioration in order to prevent disastrous failures or sudden shutdowns. Determining pipe condition through cost-effective assessments will grant very poor condition pipes to be considered first in order to avoid related risk and devastating failures. The problem here is that in most cases, there are limited data about condition of water mains due to the underground location of the pipelines and their restricted access. Several pipes were installed 100 years ago and they have not been examined until a problem occurred. An extensive literature review shows the absence of comprehensive and generalized maintenance model for scheduling the rehabilitation and replacement of individual pipelines in the whole network based on their remaining useful life. Previous research efforts concentrated mostly on developing models, which utilize long-term data and consider solely the pipe segments not the whole network. Since pipe segments are connected together, the performance of one pipe affect the performance of other pipes in the neighborhood. This is the reason that pipes should be considered as a network rather than individual pipeline. This shows the need for a model which could forecast the behavior of each pipeline and the whole network based on available data simultaneously. This study aims to develop a model that can predict remaining useful life to optimize the needed intervention plans based on the available budget. For this purpose, a statistical condition model is developed which utilizes characteristics of a pipeline to predict its condition. In this model, Delphi study identifies the most important factors affecting deterioration of water pipelines at first, through three rounds of questionnaires sent to selected experts. The findings show that important factors are mainly physical factors such as pipe age, pipe material, etc. After that, Fuzzy Analytical Hierarchy Process (FAHP) and Entropy Shannon are employed to prioritize the selected factors in previous step and calculate their weights based on their relative importance. Results reveal that pipe installation, age and material are the most effective parameters in deterioration. These weights are used to find the condition index of the pipeline from pipe characteristics, soil and water properties. Upon determining the condition index, the remaining useful life is estimated using the developed artificial neural network (ANN). Ultimately, the budget is allocated efficiently and different repair and replacement strategies are scheduled based on the remaining useful life and breakage rate of the pipelines utilizing the developed near optimum Genetic Algorithm (GA)-based model. Data of the water distribution network of the city of Montréal is used to develop, train and validate the developed models. Results indicate that 30.7 km of the pipelines of Montreal should be replaced in the next 20 years and 2610 km are in need of both major and minor rehabilitations. This research proposes a framework for optimized replacement and maintenance plans based on the remaining useful life and condition of the pipelines which will help operators for efficient budget allocation and better management of needed intervention plans.

Water Risk and Its Impact on the Financial Markets and Society

Water Risk and Its Impact on the Financial Markets and Society PDF Author: Thomas Walker
Publisher: Springer Nature
ISBN: 3030776506
Category : Business & Economics
Languages : en
Pages : 363

Get Book Here

Book Description
Water risks, including the lack of access to fresh water for personal and industrial use, droughts, floods, and water contamination, are problems that are not new, yet, they are amplifying in the face of climate change, population growth, and rapid economic development. Properly identifying, measuring, and managing these risks as well as taking advantage of related mitigation opportunities is essential for the future well-being of firms across various industries, investors who invest in these firms, local and federal governments, and ultimately our society as a whole. This edited book sheds light on this topic by examining the unique measurement and modelling challenges associated with either the scarcity or overabundance of water and their interaction with finance and society. Specifically, it explores approaches to assess and operationalize water risk, examines the vulnerability of institutions and markets, and discusses strategies for risk mitigation.

Drinking Water Distribution Systems

Drinking Water Distribution Systems PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309103061
Category : Science
Languages : en
Pages : 405

Get Book Here

Book Description
Protecting and maintaining water distributions systems is crucial to ensuring high quality drinking water. Distribution systems-consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances-carry drinking water from a centralized treatment plant or well supplies to consumers' taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management challenge from both an operational and public health standpoint. Recent data on waterborne disease outbreaks suggest that distribution systems remain a source of contamination that has yet to be fully addressed. This report evaluates approaches for risk characterization and recent data, and it identifies a variety of strategies that could be considered to reduce the risks posed by water-quality deteriorating events in distribution systems. Particular attention is given to backflow events via cross connections, the potential for contamination of the distribution system during construction and repair activities, maintenance of storage facilities, and the role of premise plumbing in public health risk. The report also identifies advances in detection, monitoring and modeling, analytical methods, and research and development opportunities that will enable the water supply industry to further reduce risks associated with drinking water distribution systems.

Pipelines 2013

Pipelines 2013 PDF Author: Sam Arnaout
Publisher:
ISBN: 9780784413012
Category : Pipelines
Languages : en
Pages : 0

Get Book Here

Book Description