Author: Nerida Ellerton
Publisher: Springer Science & Business Media
ISBN: 9400726392
Category : Education
Languages : en
Pages : 230
Book Description
The focus of this book is the fundamental influence of the cyphering tradition on mathematics education in North American colleges, schools, and apprenticeship training classes between 1607 and 1861. It is the first book on the history of North American mathematics education to be written from that perspective. The principal data source is a set of 207 handwritten cyphering books that have never previously been subjected to careful historical analysis.
Rewriting the History of School Mathematics in North America 1607-1861
Author: Nerida Ellerton
Publisher: Springer Science & Business Media
ISBN: 9400726392
Category : Education
Languages : en
Pages : 230
Book Description
The focus of this book is the fundamental influence of the cyphering tradition on mathematics education in North American colleges, schools, and apprenticeship training classes between 1607 and 1861. It is the first book on the history of North American mathematics education to be written from that perspective. The principal data source is a set of 207 handwritten cyphering books that have never previously been subjected to careful historical analysis.
Publisher: Springer Science & Business Media
ISBN: 9400726392
Category : Education
Languages : en
Pages : 230
Book Description
The focus of this book is the fundamental influence of the cyphering tradition on mathematics education in North American colleges, schools, and apprenticeship training classes between 1607 and 1861. It is the first book on the history of North American mathematics education to be written from that perspective. The principal data source is a set of 207 handwritten cyphering books that have never previously been subjected to careful historical analysis.
Abraham Lincoln’s Cyphering Book and Ten other Extraordinary Cyphering Books
Author: Nerida F. Ellerton
Publisher: Springer Science & Business Media
ISBN: 3319025023
Category : Education
Languages : en
Pages : 383
Book Description
This well-illustrated book provides strong qualitative and comparative support for the main arguments developed by Nerida Ellerton and Ken Clements in their groundbreaking Rewriting this History of School Mathematics in North America 1607–1861: The Central Role of Cyphering Books. Eleven extraordinary handwritten school mathematics manuscripts are carefully analyzed—six were prepared entirely in Great Britain, four entirely in North America, and 1 partly in Great Britain and partly in North America. The earliest of the 11 cyphering books was prepared around 1630, and the latest in 1835. Seven of the manuscripts were arithmetic cyphering books; three were navigation cyphering books, and one was a mensuration/surveying manuscript. One of the cyphering books examined in this book was prepared, over the period 1819–1826, by a young Abraham Lincoln, when he was attending small one-teacher schools in remote Spencer County, Indiana. Chapter 6 in this book provides the first detailed analysis of young Abraham’s cyphering book—which is easily the oldest surviving Lincoln manuscript. Another cyphering book, this one prepared by William Beattie in 1835, could have been prepared as a special gift for the King of England. The analyses make clear the extent of the control which the cyphering tradition had over school mathematics in North America and Great Britain between 1630 and 1840. In their final chapter Ellerton and Clements identify six lessons from their research into the cyphering tradition which relate to present-day circumstances surrounding school mathematics. These lessons are concerned with sharp differences between intended, implemented and attained curricula, the remarkable value that many students placed upon their cyphering books, the ethnomathematical circumstances which surrounded the preparations of the extraordinary cyphering books, and qualitative differences between British and North American school mathematics.
Publisher: Springer Science & Business Media
ISBN: 3319025023
Category : Education
Languages : en
Pages : 383
Book Description
This well-illustrated book provides strong qualitative and comparative support for the main arguments developed by Nerida Ellerton and Ken Clements in their groundbreaking Rewriting this History of School Mathematics in North America 1607–1861: The Central Role of Cyphering Books. Eleven extraordinary handwritten school mathematics manuscripts are carefully analyzed—six were prepared entirely in Great Britain, four entirely in North America, and 1 partly in Great Britain and partly in North America. The earliest of the 11 cyphering books was prepared around 1630, and the latest in 1835. Seven of the manuscripts were arithmetic cyphering books; three were navigation cyphering books, and one was a mensuration/surveying manuscript. One of the cyphering books examined in this book was prepared, over the period 1819–1826, by a young Abraham Lincoln, when he was attending small one-teacher schools in remote Spencer County, Indiana. Chapter 6 in this book provides the first detailed analysis of young Abraham’s cyphering book—which is easily the oldest surviving Lincoln manuscript. Another cyphering book, this one prepared by William Beattie in 1835, could have been prepared as a special gift for the King of England. The analyses make clear the extent of the control which the cyphering tradition had over school mathematics in North America and Great Britain between 1630 and 1840. In their final chapter Ellerton and Clements identify six lessons from their research into the cyphering tradition which relate to present-day circumstances surrounding school mathematics. These lessons are concerned with sharp differences between intended, implemented and attained curricula, the remarkable value that many students placed upon their cyphering books, the ethnomathematical circumstances which surrounded the preparations of the extraordinary cyphering books, and qualitative differences between British and North American school mathematics.
Toward Mathematics for All
Author: Nerida Ellerton
Publisher: Springer Nature
ISBN: 3030857247
Category : Mathematics
Languages : en
Pages : 462
Book Description
This book presents a history of mathematic between 1607 and 1865 in that part of mainland North America which is north of Mexico but excludes the present-day Canada and Alaska. Unlike most other histories of mathematics now available, the emphasis is on the gradual emergence of "mathematics for all" programs and associated changes in thinking which drove this emergence. The book takes account of changing ideas about intended, implemented and attained mathematics curricula for learners of all ages. It also pays attention to the mathematics itself, and to how it was taught and learned.
Publisher: Springer Nature
ISBN: 3030857247
Category : Mathematics
Languages : en
Pages : 462
Book Description
This book presents a history of mathematic between 1607 and 1865 in that part of mainland North America which is north of Mexico but excludes the present-day Canada and Alaska. Unlike most other histories of mathematics now available, the emphasis is on the gradual emergence of "mathematics for all" programs and associated changes in thinking which drove this emergence. The book takes account of changing ideas about intended, implemented and attained mathematics curricula for learners of all ages. It also pays attention to the mathematics itself, and to how it was taught and learned.
Handbook on the History of Mathematics Education
Author: Alexander Karp
Publisher: Springer Science & Business Media
ISBN: 146149155X
Category : Mathematics
Languages : en
Pages : 627
Book Description
This is the first comprehensive International Handbook on the History of Mathematics Education, covering a wide spectrum of epochs and civilizations, countries and cultures. Until now, much of the research into the rich and varied history of mathematics education has remained inaccessible to the vast majority of scholars, not least because it has been written in the language, and for readers, of an individual country. And yet a historical overview, however brief, has become an indispensable element of nearly every dissertation and scholarly article. This handbook provides, for the first time, a comprehensive and systematic aid for researchers around the world in finding the information they need about historical developments in mathematics education, not only in their own countries, but globally as well. Although written primarily for mathematics educators, this handbook will also be of interest to researchers of the history of education in general, as well as specialists in cultural and even social history.
Publisher: Springer Science & Business Media
ISBN: 146149155X
Category : Mathematics
Languages : en
Pages : 627
Book Description
This is the first comprehensive International Handbook on the History of Mathematics Education, covering a wide spectrum of epochs and civilizations, countries and cultures. Until now, much of the research into the rich and varied history of mathematics education has remained inaccessible to the vast majority of scholars, not least because it has been written in the language, and for readers, of an individual country. And yet a historical overview, however brief, has become an indispensable element of nearly every dissertation and scholarly article. This handbook provides, for the first time, a comprehensive and systematic aid for researchers around the world in finding the information they need about historical developments in mathematics education, not only in their own countries, but globally as well. Although written primarily for mathematics educators, this handbook will also be of interest to researchers of the history of education in general, as well as specialists in cultural and even social history.
History of Mathematics Teaching and Learning
Author: Alexander Karp
Publisher: Springer
ISBN: 3319316168
Category : Education
Languages : en
Pages : 47
Book Description
This work examines the main directions of research conducted on the history of mathematics education. It devotes substantial attention to research methodologies and the connections between this field and other scholarly fields. The results of a survey about academic literature on this subject are accompanied by a discussion of what has yet to be done and problems that remain unsolved. The main topics you will find in “ICME-13 Topical Survey” include: • Discussions of methodological issues in the history of mathematics education and of the relation between this field and other scholarly fields. • The history of the formation and transformation of curricula and textbooks as a reflection of trends in social-economic, cultural and scientific-technological development. • The influence of politics, ideology and economics on the development of mathematics education, from a historical perspective. • The history of the preeminent mathematics education organizations and the work of leading figures in mathematics education. • Mathematics education practices and tools and the preparation of mathematics teachers, from a historical perspective.
Publisher: Springer
ISBN: 3319316168
Category : Education
Languages : en
Pages : 47
Book Description
This work examines the main directions of research conducted on the history of mathematics education. It devotes substantial attention to research methodologies and the connections between this field and other scholarly fields. The results of a survey about academic literature on this subject are accompanied by a discussion of what has yet to be done and problems that remain unsolved. The main topics you will find in “ICME-13 Topical Survey” include: • Discussions of methodological issues in the history of mathematics education and of the relation between this field and other scholarly fields. • The history of the formation and transformation of curricula and textbooks as a reflection of trends in social-economic, cultural and scientific-technological development. • The influence of politics, ideology and economics on the development of mathematics education, from a historical perspective. • The history of the preeminent mathematics education organizations and the work of leading figures in mathematics education. • Mathematics education practices and tools and the preparation of mathematics teachers, from a historical perspective.
Samuel Pepys, Isaac Newton, James Hodgson, and the Beginnings of Secondary School Mathematics
Author: Nerida F. Ellerton
Publisher: Springer
ISBN: 3319466577
Category : Education
Languages : en
Pages : 340
Book Description
This book tells one of the greatest stories in the history of school mathematics. Two of the names in the title—Samuel Pepys and Isaac Newton—need no introduction, and this book draws attention to their special contributions to the history of school mathematics. According to Ellerton and Clements, during the last quarter of the seventeenth century Pepys and Newton were key players in defining what school mathematics beyond arithmetic and elementary geometry might look like. The scene at which most of the action occurred was Christ’s Hospital, which was a school, ostensibly for the poor, in central London. The Royal Mathematical School (RMS) was established at Christ’s Hospital in 1673. It was the less well-known James Hodgson, a fine mathematician and RMS master between 1709 and 1755, who demonstrated that topics such as logarithms, plane and spherical trigonometry, and the application of these to navigation, might systematically and successfully be taught to 12- to 16-year-old school children. From a wider history-of-school-education perspective, this book tells how the world’s first secondary-school mathematics program was created and how, slowly but surely, what was being achieved at RMS began to influence school mathematics in other parts of Great Britain, Europe, and America. The book has been written from the perspective of the history of school mathematics. Ellerton and Clements’s analyses of pertinent literature and of archival data, and their interpretations of those analyses, have led them to conclude that RMS was the first major school in the world to teach mathematics-beyond-arithmetic, on a systematic basis, to students aged between 12 and 16. Throughout the book, Ellerton and Clements examine issues through the lens of a lag-time theoretical perspective. From a historiographical perspective, this book emphasizes how the history of RMS can be portrayed in very different ways, depending on the vantage point from which the history is written. The authors write from the vantage point of international developments in school mathematics education and, therefore, their history of RMS differs from all other histories of RMS, most of which were written from the perspective of the history of Christ’s Hospital.
Publisher: Springer
ISBN: 3319466577
Category : Education
Languages : en
Pages : 340
Book Description
This book tells one of the greatest stories in the history of school mathematics. Two of the names in the title—Samuel Pepys and Isaac Newton—need no introduction, and this book draws attention to their special contributions to the history of school mathematics. According to Ellerton and Clements, during the last quarter of the seventeenth century Pepys and Newton were key players in defining what school mathematics beyond arithmetic and elementary geometry might look like. The scene at which most of the action occurred was Christ’s Hospital, which was a school, ostensibly for the poor, in central London. The Royal Mathematical School (RMS) was established at Christ’s Hospital in 1673. It was the less well-known James Hodgson, a fine mathematician and RMS master between 1709 and 1755, who demonstrated that topics such as logarithms, plane and spherical trigonometry, and the application of these to navigation, might systematically and successfully be taught to 12- to 16-year-old school children. From a wider history-of-school-education perspective, this book tells how the world’s first secondary-school mathematics program was created and how, slowly but surely, what was being achieved at RMS began to influence school mathematics in other parts of Great Britain, Europe, and America. The book has been written from the perspective of the history of school mathematics. Ellerton and Clements’s analyses of pertinent literature and of archival data, and their interpretations of those analyses, have led them to conclude that RMS was the first major school in the world to teach mathematics-beyond-arithmetic, on a systematic basis, to students aged between 12 and 16. Throughout the book, Ellerton and Clements examine issues through the lens of a lag-time theoretical perspective. From a historiographical perspective, this book emphasizes how the history of RMS can be portrayed in very different ways, depending on the vantage point from which the history is written. The authors write from the vantage point of international developments in school mathematics education and, therefore, their history of RMS differs from all other histories of RMS, most of which were written from the perspective of the history of Christ’s Hospital.
Thomas Jefferson and his Decimals 1775–1810: Neglected Years in the History of U.S. School Mathematics
Author: M.A. (Ken) Clements
Publisher: Springer
ISBN: 3319025058
Category : Education
Languages : en
Pages : 219
Book Description
This well-illustrated book, by two established historians of school mathematics, documents Thomas Jefferson’s quest, after 1775, to introduce a form of decimal currency to the fledgling United States of America. The book describes a remarkable study showing how the United States’ decision to adopt a fully decimalized, carefully conceived national currency ultimately had a profound effect on U.S. school mathematics curricula. The book shows, by analyzing a large set of arithmetic textbooks and an even larger set of handwritten cyphering books, that although most eighteenth- and nineteenth-century authors of arithmetic textbooks included sections on vulgar and decimal fractions, most school students who prepared cyphering books did not study either vulgar or decimal fractions. In other words, author-intended school arithmetic curricula were not matched by teacher-implemented school arithmetic curricula. Amazingly, that state of affairs continued even after the U.S. Mint began minting dollars, cents and dimes in the 1790s. In U.S. schools between 1775 and 1810 it was often the case that Federal money was studied but decimal fractions were not. That gradually changed during the first century of the formal existence of the United States of America. By contrast, Chapter 6 reports a comparative analysis of data showing that in Great Britain only a minority of eighteenth- and nineteenth-century school students studied decimal fractions. Clements and Ellerton argue that Jefferson’s success in establishing a system of decimalized Federal money had educationally significant effects on implemented school arithmetic curricula in the United States of America. The lens through which Clements and Ellerton have analyzed their large data sets has been the lag-time theoretical position which they have developed. That theory posits that the time between when an important mathematical “discovery” is made (or a concept is “created”) and when that discovery (or concept) becomes an important part of school mathematics is dependent on mathematical, social, political and economic factors. Thus, lag time varies from region to region, and from nation to nation. Clements and Ellerton are the first to identify the years after 1775 as the dawn of a new day in U.S. school mathematics—traditionally, historians have argued that nothing in U.S. school mathematics was worthy of serious study until the 1820s. This book emphasizes the importance of the acceptance of decimal currency so far as school mathematics is concerned. It also draws attention to the consequences for school mathematics of the conscious decision of the U.S. Congress not to proceed with Thomas Jefferson’s grand scheme for a system of decimalized weights and measures.
Publisher: Springer
ISBN: 3319025058
Category : Education
Languages : en
Pages : 219
Book Description
This well-illustrated book, by two established historians of school mathematics, documents Thomas Jefferson’s quest, after 1775, to introduce a form of decimal currency to the fledgling United States of America. The book describes a remarkable study showing how the United States’ decision to adopt a fully decimalized, carefully conceived national currency ultimately had a profound effect on U.S. school mathematics curricula. The book shows, by analyzing a large set of arithmetic textbooks and an even larger set of handwritten cyphering books, that although most eighteenth- and nineteenth-century authors of arithmetic textbooks included sections on vulgar and decimal fractions, most school students who prepared cyphering books did not study either vulgar or decimal fractions. In other words, author-intended school arithmetic curricula were not matched by teacher-implemented school arithmetic curricula. Amazingly, that state of affairs continued even after the U.S. Mint began minting dollars, cents and dimes in the 1790s. In U.S. schools between 1775 and 1810 it was often the case that Federal money was studied but decimal fractions were not. That gradually changed during the first century of the formal existence of the United States of America. By contrast, Chapter 6 reports a comparative analysis of data showing that in Great Britain only a minority of eighteenth- and nineteenth-century school students studied decimal fractions. Clements and Ellerton argue that Jefferson’s success in establishing a system of decimalized Federal money had educationally significant effects on implemented school arithmetic curricula in the United States of America. The lens through which Clements and Ellerton have analyzed their large data sets has been the lag-time theoretical position which they have developed. That theory posits that the time between when an important mathematical “discovery” is made (or a concept is “created”) and when that discovery (or concept) becomes an important part of school mathematics is dependent on mathematical, social, political and economic factors. Thus, lag time varies from region to region, and from nation to nation. Clements and Ellerton are the first to identify the years after 1775 as the dawn of a new day in U.S. school mathematics—traditionally, historians have argued that nothing in U.S. school mathematics was worthy of serious study until the 1820s. This book emphasizes the importance of the acceptance of decimal currency so far as school mathematics is concerned. It also draws attention to the consequences for school mathematics of the conscious decision of the U.S. Congress not to proceed with Thomas Jefferson’s grand scheme for a system of decimalized weights and measures.
Using Design Research and History to Tackle a Fundamental Problem with School Algebra
Author: Sinan Kanbir
Publisher: Springer
ISBN: 3319592041
Category : Education
Languages : en
Pages : 339
Book Description
In this well-illustrated book the authors, Sinan Kanbir, Ken Clements, and Nerida Ellerton, tackle a persistent, and universal, problem in school mathematics—why do so many middle-school and secondary-school students find it difficult to learn algebra well? What makes the book important are the unique features which comprise the design-research approach that the authors adopted in seeking a solution to the problem. The first unique feature is that the authors offer an overview of the history of school algebra. Despite the fact that algebra has been an important component of secondary-school mathematics for more than three centuries, there has never been a comprehensive historical analysis of factors influencing the teaching and learning of that component. The authors identify, through historical analysis, six purposes of school algebra: (a) algebra as a body of knowledge essential to higher mathematical and scientific studies, (b) algebra as generalized arithmetic, (c) algebra as a prerequisite for entry to higher studies, (d) algebra as offering a language and set of procedures for modeling real-life problems, (e) algebra as an aid to describing structural properties in elementary mathematics, and (f) algebra as a study of variables. They also raise the question whether school algebra represents a unidimensional trait. Kanbir, Clements and Ellerton offer an unusual hybrid theoretical framework for their intervention study (by which seventh-grade students significantly improved their elementary algebra knowledge and skills). Their theoretical frame combined Charles Sanders Peirce’s triadic signifier-interpretant-signified theory, which is in the realm of semiotics, with Johann Friedrich Herbart’s theory of apperception, and Ken Clements’ and Gina Del Campo’s theory relating to the need to expand modes of communications in mathematics classrooms so that students engage in receptive and expressive modes. Practicing classroom teachers formed part of the research team. This book appears in Springer’s series on the “History of Mathematics Education.” Not only does it include an important analysis of the history of school algebra, but it also adopts a theoretical frame which relies more on “theories from the past,” than on contemporary theories in the field of mathematics education. The results of the well-designed classroom intervention are sufficiently impressive that the study might havecreated and illuminated a pathway for future researchers to take.
Publisher: Springer
ISBN: 3319592041
Category : Education
Languages : en
Pages : 339
Book Description
In this well-illustrated book the authors, Sinan Kanbir, Ken Clements, and Nerida Ellerton, tackle a persistent, and universal, problem in school mathematics—why do so many middle-school and secondary-school students find it difficult to learn algebra well? What makes the book important are the unique features which comprise the design-research approach that the authors adopted in seeking a solution to the problem. The first unique feature is that the authors offer an overview of the history of school algebra. Despite the fact that algebra has been an important component of secondary-school mathematics for more than three centuries, there has never been a comprehensive historical analysis of factors influencing the teaching and learning of that component. The authors identify, through historical analysis, six purposes of school algebra: (a) algebra as a body of knowledge essential to higher mathematical and scientific studies, (b) algebra as generalized arithmetic, (c) algebra as a prerequisite for entry to higher studies, (d) algebra as offering a language and set of procedures for modeling real-life problems, (e) algebra as an aid to describing structural properties in elementary mathematics, and (f) algebra as a study of variables. They also raise the question whether school algebra represents a unidimensional trait. Kanbir, Clements and Ellerton offer an unusual hybrid theoretical framework for their intervention study (by which seventh-grade students significantly improved their elementary algebra knowledge and skills). Their theoretical frame combined Charles Sanders Peirce’s triadic signifier-interpretant-signified theory, which is in the realm of semiotics, with Johann Friedrich Herbart’s theory of apperception, and Ken Clements’ and Gina Del Campo’s theory relating to the need to expand modes of communications in mathematics classrooms so that students engage in receptive and expressive modes. Practicing classroom teachers formed part of the research team. This book appears in Springer’s series on the “History of Mathematics Education.” Not only does it include an important analysis of the history of school algebra, but it also adopts a theoretical frame which relies more on “theories from the past,” than on contemporary theories in the field of mathematics education. The results of the well-designed classroom intervention are sufficiently impressive that the study might havecreated and illuminated a pathway for future researchers to take.
Research in History and Philosophy of Mathematics
Author: Maria Zack
Publisher: Birkhäuser
ISBN: 3319222589
Category : Mathematics
Languages : en
Pages : 200
Book Description
This volume contains thirteen papers that were presented at the 2014 Annual Meeting of the Canadian Society for History and Philosophy of Mathematics/La Société Canadienne d’Histoire et de Philosophie des Mathématiques, held on the campus of Brock University in St. Catharines, Ontario, Canada. It contains rigorously reviewed modern scholarship on general topics in the history and philosophy of mathematics, as well as on the meeting’s special topic, Early Scientific Computation. These papers cover subjects such as •Physical tools used by mathematicians in the seventeenth century •The first historical appearance of the game-theoretical concept of mixed-strategy equilibrium •George Washington’s mathematical cyphering books •The development of the Venn diagram •The role of Euler and other mathematicians in the development of algebraic analysis •Arthur Cayley and Alfred Kempe’s influence on Charles Peirce's diagrammatic logic •The influence publishers had on the development of mathematical pedagogy in the nineteenth century •A description of the 1924 International Mathematical Congress held in Toronto, told in the form of a “narrated slide show” Written by leading scholars in the field, these papers will be accessible to not only mathematicians and students of the history and philosophy of mathematics, but also anyone with a general interest in mathematics.
Publisher: Birkhäuser
ISBN: 3319222589
Category : Mathematics
Languages : en
Pages : 200
Book Description
This volume contains thirteen papers that were presented at the 2014 Annual Meeting of the Canadian Society for History and Philosophy of Mathematics/La Société Canadienne d’Histoire et de Philosophie des Mathématiques, held on the campus of Brock University in St. Catharines, Ontario, Canada. It contains rigorously reviewed modern scholarship on general topics in the history and philosophy of mathematics, as well as on the meeting’s special topic, Early Scientific Computation. These papers cover subjects such as •Physical tools used by mathematicians in the seventeenth century •The first historical appearance of the game-theoretical concept of mixed-strategy equilibrium •George Washington’s mathematical cyphering books •The development of the Venn diagram •The role of Euler and other mathematicians in the development of algebraic analysis •Arthur Cayley and Alfred Kempe’s influence on Charles Peirce's diagrammatic logic •The influence publishers had on the development of mathematical pedagogy in the nineteenth century •A description of the 1924 International Mathematical Congress held in Toronto, told in the form of a “narrated slide show” Written by leading scholars in the field, these papers will be accessible to not only mathematicians and students of the history and philosophy of mathematics, but also anyone with a general interest in mathematics.
Reading Mathematics in Early Modern Europe
Author: Philip Beeley
Publisher: Routledge
ISBN: 1000207471
Category : Literary Criticism
Languages : en
Pages : 389
Book Description
Libraries and archives contain many thousands of early modern mathematical books, of which almost equally many bear readers’ marks, ranging from deliberate annotations and accidental blots to corrections and underlinings. Such evidence provides us with the material and intellectual tools for exploring the nature of mathematical reading and the ways in which mathematics was disseminated and assimilated across different social milieus in the early centuries of print culture. Other evidence is important, too, as the case studies collected in the volume document. Scholarly correspondence can help us understand the motives and difficulties in producing new printed texts, library catalogues can illuminate collection practices, while manuscripts can teach us more about textual traditions. By defining and illuminating the distinctive world of early modern mathematical reading, the volume seeks to close the gap between the history of mathematics as a history of texts and history of mathematics as part of the broader history of human culture.
Publisher: Routledge
ISBN: 1000207471
Category : Literary Criticism
Languages : en
Pages : 389
Book Description
Libraries and archives contain many thousands of early modern mathematical books, of which almost equally many bear readers’ marks, ranging from deliberate annotations and accidental blots to corrections and underlinings. Such evidence provides us with the material and intellectual tools for exploring the nature of mathematical reading and the ways in which mathematics was disseminated and assimilated across different social milieus in the early centuries of print culture. Other evidence is important, too, as the case studies collected in the volume document. Scholarly correspondence can help us understand the motives and difficulties in producing new printed texts, library catalogues can illuminate collection practices, while manuscripts can teach us more about textual traditions. By defining and illuminating the distinctive world of early modern mathematical reading, the volume seeks to close the gap between the history of mathematics as a history of texts and history of mathematics as part of the broader history of human culture.