Author: Richard McElreath
Publisher: CRC Press
ISBN: 1315362619
Category : Mathematics
Languages : en
Pages : 488
Book Description
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Statistical Rethinking
Author: Richard McElreath
Publisher: CRC Press
ISBN: 1315362619
Category : Mathematics
Languages : en
Pages : 488
Book Description
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Publisher: CRC Press
ISBN: 1315362619
Category : Mathematics
Languages : en
Pages : 488
Book Description
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
High-Dimensional Probability
Author: Roman Vershynin
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Publisher: Cambridge University Press
ISBN: 1108415199
Category : Business & Economics
Languages : en
Pages : 299
Book Description
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Stochastic Dominance
Author: Haim Levy
Publisher: Springer Science & Business Media
ISBN: 0387293116
Category : Business & Economics
Languages : en
Pages : 439
Book Description
This book is devoted to investment decision-making under uncertainty. The book covers three basic approaches to this process: the stochastic dominance approach; the mean-variance approach; and the non-expected utility approach, focusing on prospect theory and its modified version, cumulative prospect theory. Each approach is discussed and compared. In addition, this volume examines cases in which stochastic dominance rules coincide with the mean-variance rule and considers how contradictions between these two approaches may occur.
Publisher: Springer Science & Business Media
ISBN: 0387293116
Category : Business & Economics
Languages : en
Pages : 439
Book Description
This book is devoted to investment decision-making under uncertainty. The book covers three basic approaches to this process: the stochastic dominance approach; the mean-variance approach; and the non-expected utility approach, focusing on prospect theory and its modified version, cumulative prospect theory. Each approach is discussed and compared. In addition, this volume examines cases in which stochastic dominance rules coincide with the mean-variance rule and considers how contradictions between these two approaches may occur.
Portfolio Performance Measurement and Benchmarking, Chapter 12 - Conditional Performance Evaluation
Author: Jon A. Christopherson
Publisher: McGraw Hill Professional
ISBN: 0071733183
Category : Business & Economics
Languages : en
Pages : 14
Book Description
Here is a chapter from Portfolio Performance Measurement and Benchmarking, which will help you create a system you can use to accurately measure your performance. The authors highlight common mechanical problems involved in building benchmarks and clearly illustrate the resulting fallouts. The failure to choose the right investing performance benchmarks often leads to bad decisions or inaction and, inevitably, lost profits. In this book you will discover a foundation for benchmark construction and discuss methods for all different asset classes and investment styles.
Publisher: McGraw Hill Professional
ISBN: 0071733183
Category : Business & Economics
Languages : en
Pages : 14
Book Description
Here is a chapter from Portfolio Performance Measurement and Benchmarking, which will help you create a system you can use to accurately measure your performance. The authors highlight common mechanical problems involved in building benchmarks and clearly illustrate the resulting fallouts. The failure to choose the right investing performance benchmarks often leads to bad decisions or inaction and, inevitably, lost profits. In this book you will discover a foundation for benchmark construction and discuss methods for all different asset classes and investment styles.
Efficiency and Anomalies in Stock Markets
Author: Wing-Keung Wong
Publisher: Mdpi AG
ISBN: 9783036530802
Category : Business & Economics
Languages : en
Pages : 232
Book Description
The Efficient Market Hypothesis believes that it is impossible for an investor to outperform the market because all available information is already built into stock prices. However, some anomalies could persist in stock markets while some other anomalies could appear, disappear and re-appear again without any warning. A Special Issue on "Efficiency and Anomalies in Stock Markets" will be devoted to advancements in the theoretical development of market efficiency and anomaly in the Stock Market, as well as applications in Stock Market efficiency and anomalies.
Publisher: Mdpi AG
ISBN: 9783036530802
Category : Business & Economics
Languages : en
Pages : 232
Book Description
The Efficient Market Hypothesis believes that it is impossible for an investor to outperform the market because all available information is already built into stock prices. However, some anomalies could persist in stock markets while some other anomalies could appear, disappear and re-appear again without any warning. A Special Issue on "Efficiency and Anomalies in Stock Markets" will be devoted to advancements in the theoretical development of market efficiency and anomaly in the Stock Market, as well as applications in Stock Market efficiency and anomalies.
Global Waves of Debt
Author: M. Ayhan Kose
Publisher: World Bank Publications
ISBN: 1464815453
Category : Business & Economics
Languages : en
Pages : 403
Book Description
The global economy has experienced four waves of rapid debt accumulation over the past 50 years. The first three debt waves ended with financial crises in many emerging market and developing economies. During the current wave, which started in 2010, the increase in debt in these economies has already been larger, faster, and broader-based than in the previous three waves. Current low interest rates mitigate some of the risks associated with high debt. However, emerging market and developing economies are also confronted by weak growth prospects, mounting vulnerabilities, and elevated global risks. A menu of policy options is available to reduce the likelihood that the current debt wave will end in crisis and, if crises do take place, will alleviate their impact.
Publisher: World Bank Publications
ISBN: 1464815453
Category : Business & Economics
Languages : en
Pages : 403
Book Description
The global economy has experienced four waves of rapid debt accumulation over the past 50 years. The first three debt waves ended with financial crises in many emerging market and developing economies. During the current wave, which started in 2010, the increase in debt in these economies has already been larger, faster, and broader-based than in the previous three waves. Current low interest rates mitigate some of the risks associated with high debt. However, emerging market and developing economies are also confronted by weak growth prospects, mounting vulnerabilities, and elevated global risks. A menu of policy options is available to reduce the likelihood that the current debt wave will end in crisis and, if crises do take place, will alleviate their impact.
Financial Markets and the Real Economy
Author: John H. Cochrane
Publisher: Now Publishers Inc
ISBN: 1933019158
Category : Business & Economics
Languages : en
Pages : 117
Book Description
Financial Markets and the Real Economy reviews the current academic literature on the macroeconomics of finance.
Publisher: Now Publishers Inc
ISBN: 1933019158
Category : Business & Economics
Languages : en
Pages : 117
Book Description
Financial Markets and the Real Economy reviews the current academic literature on the macroeconomics of finance.
Econometric Analysis of Cross Section and Panel Data, second edition
Author: Jeffrey M. Wooldridge
Publisher: MIT Press
ISBN: 0262232588
Category : Business & Economics
Languages : en
Pages : 1095
Book Description
The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.
Publisher: MIT Press
ISBN: 0262232588
Category : Business & Economics
Languages : en
Pages : 1095
Book Description
The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.
All of Statistics
Author: Larry Wasserman
Publisher: Springer Science & Business Media
ISBN: 0387217363
Category : Mathematics
Languages : en
Pages : 446
Book Description
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Publisher: Springer Science & Business Media
ISBN: 0387217363
Category : Mathematics
Languages : en
Pages : 446
Book Description
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Bayesian Data Analysis, Third Edition
Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677
Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677
Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.