Review and Characterization of Gallium Nitride Power Devices

Review and Characterization of Gallium Nitride Power Devices PDF Author: Edward Andrew Jones
Publisher:
ISBN:
Category :
Languages : en
Pages : 150

Get Book Here

Book Description
Gallium Nitride (GaN) power devices are an emerging technology that have only recently become available commercially. This new technology enables the design of converters at higher frequencies and efficiencies than those achievable with conventional Si devices. This thesis reviews the characteristics and commercial status of both vertical and lateral GaN power devices from the user perspective, providing the background necessary to understand the significance of these recent developments. Additionally, the challenges encountered in GaN-based converter design are considered, such as the consequences of faster switching on gate driver design and board layout. Other issues include the unique reverse conduction behavior, dynamic on-resistance, breakdown mechanisms, thermal design, device availability, and reliability qualification. Static and dynamic characterization was then performed across the full current, voltage, and temperature range of this device to enable effective GaN-based converter design. Static testing was performed with a curve tracer and precision impedance analyzer. A double pulse test setup was constructed and used to measure switching loss and time at the fastest achievable switching speed, and the subsequent overvoltages due to the fast switching were characterized. The results were also analyzed to characterize the effects of cross-talk in the active and synchronous devices of a phase-leg topology with enhancement-mode GaN HFETs. Based on these results and analysis, an accurate loss model was developed for the device under test. Based on analysis of these characterization results, a simplified model was developed to describe the overall switching behavior and some unique features of the device. The consequences of the Miller effect during the turn-on transient were studied to show that no Miller plateau occurs, but rather a decreased gate voltage slope, followed by a sharp drop. The significance of this distinction is derived and explained. GaN performance at elevated temperature was also studied, because turn-on time increases significantly with temperature, and turn-on losses increase as a result. Based on this relationship, a temperature-dependent turn-on model and a linear scaling factor was proposed for estimating turn-on loss in e-mode GaN HFETs.

Review and Characterization of Gallium Nitride Power Devices

Review and Characterization of Gallium Nitride Power Devices PDF Author: Edward Andrew Jones
Publisher:
ISBN:
Category :
Languages : en
Pages : 150

Get Book Here

Book Description
Gallium Nitride (GaN) power devices are an emerging technology that have only recently become available commercially. This new technology enables the design of converters at higher frequencies and efficiencies than those achievable with conventional Si devices. This thesis reviews the characteristics and commercial status of both vertical and lateral GaN power devices from the user perspective, providing the background necessary to understand the significance of these recent developments. Additionally, the challenges encountered in GaN-based converter design are considered, such as the consequences of faster switching on gate driver design and board layout. Other issues include the unique reverse conduction behavior, dynamic on-resistance, breakdown mechanisms, thermal design, device availability, and reliability qualification. Static and dynamic characterization was then performed across the full current, voltage, and temperature range of this device to enable effective GaN-based converter design. Static testing was performed with a curve tracer and precision impedance analyzer. A double pulse test setup was constructed and used to measure switching loss and time at the fastest achievable switching speed, and the subsequent overvoltages due to the fast switching were characterized. The results were also analyzed to characterize the effects of cross-talk in the active and synchronous devices of a phase-leg topology with enhancement-mode GaN HFETs. Based on these results and analysis, an accurate loss model was developed for the device under test. Based on analysis of these characterization results, a simplified model was developed to describe the overall switching behavior and some unique features of the device. The consequences of the Miller effect during the turn-on transient were studied to show that no Miller plateau occurs, but rather a decreased gate voltage slope, followed by a sharp drop. The significance of this distinction is derived and explained. GaN performance at elevated temperature was also studied, because turn-on time increases significantly with temperature, and turn-on losses increase as a result. Based on this relationship, a temperature-dependent turn-on model and a linear scaling factor was proposed for estimating turn-on loss in e-mode GaN HFETs.

Gallium Nitride Power Devices

Gallium Nitride Power Devices PDF Author: Hongyu Yu
Publisher: CRC Press
ISBN: 1351767607
Category : Science
Languages : en
Pages : 301

Get Book Here

Book Description
GaN is considered the most promising material candidate in next-generation power device applications, owing to its unique material properties, for example, bandgap, high breakdown field, and high electron mobility. Therefore, GaN power device technologies are listed as the top priority to be developed in many countries, including the United States, the European Union, Japan, and China. This book presents a comprehensive overview of GaN power device technologies, for example, material growth, property analysis, device structure design, fabrication process, reliability, failure analysis, and packaging. It provides useful information to both students and researchers in academic and related industries working on GaN power devices. GaN wafer growth technology is from Enkris Semiconductor, currently one of the leading players in commercial GaN wafers. Chapters 3 and 7, on the GaN transistor fabrication process and GaN vertical power devices, are edited by Dr. Zhihong Liu, who has been working on GaN devices for more than ten years. Chapters 2 and 5, on the characteristics of polarization effects and the original demonstration of AlGaN/GaN heterojunction field-effect transistors, are written by researchers from Southwest Jiaotong University. Chapters 6, 8, and 9, on surface passivation, reliability, and package technologies, are edited by a group of researchers from the Southern University of Science and Technology of China.

Power GaN Devices

Power GaN Devices PDF Author: Matteo Meneghini
Publisher: Springer
ISBN: 3319431994
Category : Technology & Engineering
Languages : en
Pages : 383

Get Book Here

Book Description
This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.

Gallium Nitride (GaN)

Gallium Nitride (GaN) PDF Author: Farid Medjdoub
Publisher: CRC Press
ISBN: 1482220040
Category : Technology & Engineering
Languages : en
Pages : 372

Get Book Here

Book Description
Addresses a Growing Need for High-Power and High-Frequency Transistors Gallium Nitride (GaN): Physics, Devices, and Technology offers a balanced perspective on the state of the art in gallium nitride technology. A semiconductor commonly used in bright light-emitting diodes, GaN can serve as a great alternative to existing devices used in microelectronics. It has a wide band gap and high electron mobility that gives it special properties for applications in optoelectronic, high-power, and high-frequency devices, and because of its high off-state breakdown strength combined with excellent on-state channel conductivity, GaN is an ideal candidate for switching power transistors. Explores Recent Progress in High-Frequency GaN Technology Written by a panel of academic and industry experts from around the globe, this book reviews the advantages of GaN-based material systems suitable for high-frequency, high-power applications. It provides an overview of the semiconductor environment, outlines the fundamental device physics of GaN, and describes GaN materials and device structures that are needed for the next stage of microelectronics and optoelectronics. The book details the development of radio frequency (RF) semiconductor devices and circuits, considers the current challenges that the industry now faces, and examines future trends. In addition, the authors: Propose a design in which multiple LED stacks can be connected in a series using interband tunnel junction (TJ) interconnects Examine GaN technology while in its early stages of high-volume deployment in commercial and military products Consider the potential use of both sunlight and hydrogen as promising and prominent energy sources for this technology Introduce two unique methods, PEC oxidation and vapor cooling condensation methods, for the deposition of high-quality oxide layers A single-source reference for students and professionals, Gallium Nitride (GaN): Physics, Devices, and Technology provides an overall assessment of the semiconductor environment, discusses the potential use of GaN-based technology for RF semiconductor devices, and highlights the current and emerging applications of GaN.

Fabrication and Characterization of Gallium Nitride Based Devices

Fabrication and Characterization of Gallium Nitride Based Devices PDF Author: Atanu Das
Publisher:
ISBN:
Category :
Languages : zh-CN
Pages :

Get Book Here

Book Description


Fabrication and Characterization of Gallium Nitride Electronic Devices

Fabrication and Characterization of Gallium Nitride Electronic Devices PDF Author: Jerry Wayne Johnson
Publisher:
ISBN:
Category :
Languages : en
Pages : 536

Get Book Here

Book Description


Gallium Nitride Electronics

Gallium Nitride Electronics PDF Author: RĂ¼diger Quay
Publisher: Springer Science & Business Media
ISBN: 3540718923
Category : Technology & Engineering
Languages : en
Pages : 492

Get Book Here

Book Description
This book is based on nearly a decade of materials and electronics research at the leading research institution on the nitride topic in Europe. It is a comprehensive monograph and tutorial that will be of interest to graduate students of electrical engineering, communication engineering, and physics; to materials, device, and circuit engineers in research and industry; to all scientists with a general interest in advanced electronics.

GaN Transistors for Efficient Power Conversion

GaN Transistors for Efficient Power Conversion PDF Author: Alex Lidow
Publisher: John Wiley & Sons
ISBN: 1119594421
Category : Science
Languages : en
Pages : 470

Get Book Here

Book Description
An up-to-date, practical guide on upgrading from silicon to GaN, and how to use GaN transistors in power conversion systems design This updated, third edition of a popular book on GaN transistors for efficient power conversion has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout, and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. GaN Transistors for Efficient Power Conversion, 3rd Edition brings key updates to the chapters of Driving GaN Transistors; Modeling, Simulation, and Measurement of GaN Transistors; DC-DC Power Conversion; Envelope Tracking; and Highly Resonant Wireless Energy Transfer. It also offers new chapters on Thermal Management, Multilevel Converters, and Lidar, and revises many others throughout. Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications Updated with 35% new material, including three new chapters on Thermal Management, Multilevel Converters, Wireless Power, and Lidar Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors A valuable resource for professional engineers, systems designers, and electrical engineering students who need to fully understand the state-of-the-art GaN Transistors for Efficient Power Conversion, 3rd Edition is an essential learning tool and reference guide that enables power conversion engineers to design energy-efficient, smaller, and more cost-effective products using GaN transistors.

Thermal Management of Gallium Nitride Electronics

Thermal Management of Gallium Nitride Electronics PDF Author: Marko Tadjer
Publisher: Woodhead Publishing
ISBN: 0128211059
Category : Technology & Engineering
Languages : en
Pages : 498

Get Book Here

Book Description
Thermal Management of Gallium Nitride Electronics outlines the technical approaches undertaken by leaders in the community, the challenges they have faced, and the resulting advances in the field. This book serves as a one-stop reference for compound semiconductor device researchers tasked with solving this engineering challenge for future material systems based on ultra-wide bandgap semiconductors. A number of perspectives are included, such as the growth methods of nanocrystalline diamond, the materials integration of polycrystalline diamond through wafer bonding, and the new physics of thermal transport across heterogeneous interfaces. Over the past 10 years, the book's authors have performed pioneering experiments in the integration of nanocrystalline diamond capping layers into the fabrication process of compound semiconductor devices. Significant research efforts of integrating diamond and GaN have been reported by a number of groups since then, thus resulting in active thermal management options that do not necessarily lead to performance derating to avoid self-heating during radio frequency or power switching operation of these devices. Self-heating refers to the increased channel temperature caused by increased energy transfer from electrons to the lattice at high power. This book chronicles those breakthroughs. Includes the fundamentals of thermal management of wide-bandgap semiconductors, with historical context, a review of common heating issues, thermal transport physics, and characterization methods Reviews the latest strategies to overcome heating issues through materials modeling, growth and device design strategies Touches on emerging, real-world applications for thermal management strategies in power electronics

Wide Bandgap (SiC/GaN) Power Devices Characterization and Modeling

Wide Bandgap (SiC/GaN) Power Devices Characterization and Modeling PDF Author: Ke Li
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Compared to traditional silicon (Si) semiconductor material, wide bandgap (WBG) materials like silicon carbide (SiC) and gallium nitride are gradually applied to fabricate power semiconductor devices, which are used in power converters to achieve high power efficiency, high operation temperature and high switching frequency. As those power devices are relatively new, their characterization and modeling are important to better understand their characteristics for better use. This dissertation is mainly focused on those WBG power semiconductor devices characterization, modeling and fast switching currents measurement. In order to measure their static characteristics, a single-pulse method is presented. A SiC diode and a "normally-off" SiC JFET is characterized by this method from ambient temperature to their maximal junction temperature with the maximal power dissipation around kilowatt. Afterwards, in order to determine power device inter-electrode capacitances, a measurement method based on the use of multiple current probes is proposed and validated by measuring inter-electrode capacitances of power devices of different technologies. Behavioral models of a Si diode and the SiC JFET are built by using the results of the above characterization methods, by which the evolution of the inter-electrode capacitances for different operating conditions are included in the models. Power diode models are validated with the measurements, in which the current is measured by a proposed current surface probe.