Retrodirective Phase-lock Loop Controlled Phased Array Antenna for a Solar Power Satellite System

Retrodirective Phase-lock Loop Controlled Phased Array Antenna for a Solar Power Satellite System PDF Author: Samuel John Kokel
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis proposes a novel technique using a phase-lock loop (PLL) style phase control loop to achieve retrodirective phased array antenna steering. This novel approach introduces the concept of phase scaling and frequency translation. It releases the retrodirective transmit-receive frequency ratio from integer constraints and avoids steering approximation errors. The concept was developed to achieve automatic and precise beam steering for the solar power satellite (SPS). The testing was performed using a transceiver converting a pair of received 2.9 GHz signals down to 10 MHz, and up converting two 10 MHz signals to 5.8 GHz. Phase scaling and conjugation was performed at the 10 MHz IF using linear XOR phase detectors and a PLL loop to synthesize a 10 MHz signal with conjugate phase. A phase control loop design is presented using PLL design theory achieving a full 2 [pi] steering range. The concept of retrodirective beam steering is also presented in detail. Operational theory and techniques of the proposed method are presented. The prototype circuit is built and the fabrication details are presented. Measured performance is presented along with measurement techniques. Pilot phase detectors and PCL achieve good linearity as required. The achieved performance is benchmarked with standards derived from likely performance requirements of the SPS and beam steering of small versus large arrays are considered.

Retrodirective Phase-lock Loop Controlled Phased Array Antenna for a Solar Power Satellite System

Retrodirective Phase-lock Loop Controlled Phased Array Antenna for a Solar Power Satellite System PDF Author: Samuel John Kokel
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis proposes a novel technique using a phase-lock loop (PLL) style phase control loop to achieve retrodirective phased array antenna steering. This novel approach introduces the concept of phase scaling and frequency translation. It releases the retrodirective transmit-receive frequency ratio from integer constraints and avoids steering approximation errors. The concept was developed to achieve automatic and precise beam steering for the solar power satellite (SPS). The testing was performed using a transceiver converting a pair of received 2.9 GHz signals down to 10 MHz, and up converting two 10 MHz signals to 5.8 GHz. Phase scaling and conjugation was performed at the 10 MHz IF using linear XOR phase detectors and a PLL loop to synthesize a 10 MHz signal with conjugate phase. A phase control loop design is presented using PLL design theory achieving a full 2 [pi] steering range. The concept of retrodirective beam steering is also presented in detail. Operational theory and techniques of the proposed method are presented. The prototype circuit is built and the fabrication details are presented. Measured performance is presented along with measurement techniques. Pilot phase detectors and PCL achieve good linearity as required. The achieved performance is benchmarked with standards derived from likely performance requirements of the SPS and beam steering of small versus large arrays are considered.

Retrodirective Phased Array Antenna for Nanosatellites

Retrodirective Phased Array Antenna for Nanosatellites PDF Author: Justin W. Long
Publisher:
ISBN:
Category : Microspacecraft
Languages : en
Pages : 318

Get Book Here

Book Description
This thesis presents a S-band phased array antenna for CubeSat applications. Existing state-of the-art high gain antenna systems are not well suited to the majority of CubeSats, those that fall within the 1U (10 cm x 10 cm x 10 cm) to 3U (10 cm x 10 cm x 30 cm) size ranges and in Low Earth Orbit (LEO). The system presented in this thesis is designed specifically to meet the needs of those satellites. This system is designed to fit on the 1U face (10 cm x 10 cm) of a CubeSat and requires no deployables. The use of beamforming and retrodirective algorithms reduces the pointing requirements of the antenna, easing the strict requirements that high gain antennas typically force on a CubeSat mission. Additionally, this design minimizes volume and uses low cost Commercial-off-the-Shelf (COTS) parts. This thesis discusses the theoretical background of phased array theory and retrodirective algorithms. Analysis are presented that show the characteristics and advantages of retrodirective phased antenna systems. Preliminary trade studies and design analyses show the feasibility and expected performance of a system utilizing existing COTS parts. The preliminary analysis shows that an antenna system can be achieved with ≥8.5 dBi of gain, 27dB of transmitted signal gain, 20% Power Added Efficiency (PAE) within a 1 W to 2 W power output, and an 80° effective beamwidth. Simulation results show an example antenna array that achieves 8.14 dBi of gain and an 82° effective beamwidth. Testing results on a prototype of the front-end electronics show that with minimal calibration, the beamforming and scanning error can be reduced to 5°. The power consumption and signal gain of the electronics is also verified through testing. The CubeSat Communications Platform, a CubeSat mission funded through the Air Force Research Laboratory is in Phase A design to demonstrate this antenna system, along with other experimental payloads. This thesis includes a discussion of interface control, mission requirements, operations, and a recommended experiment sequence to test and verify the antenna system on orbit.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1034

Get Book Here

Book Description


NASA Patent Abstracts Bibliography

NASA Patent Abstracts Bibliography PDF Author: United States. National Aeronautics and Space Administration. Scientific and Technical Information Program
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 654

Get Book Here

Book Description


NASA Patent Abstracts Bibliography

NASA Patent Abstracts Bibliography PDF Author: United States. National Aeronautics and Space Administration. Scientific and Technical Information Office
Publisher:
ISBN:
Category : Astronautics
Languages : en
Pages : 644

Get Book Here

Book Description


Proceedings

Proceedings PDF Author: International Telemetering Conference
Publisher:
ISBN:
Category : Telemeter
Languages : en
Pages : 592

Get Book Here

Book Description


Novel Technologies and Techniques for Low-cost Phased Arrays and Scanning Antennas

Novel Technologies and Techniques for Low-cost Phased Arrays and Scanning Antennas PDF Author: Christopher Timothy Rodenbeck
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This dissertation introduces new technologies and techniques for low-cost phased arrays and scanning antennas. Special emphasis is placed on new approaches for low-cost millimeter-wave beam control. Several topics are covered. A novel reconfigurable grating antenna is presented for low-cost millimeter-wave beam steering. The versatility of the approach is proven by adapting the design to dual-beam and circular-polarized operation. In addition, a simple and accurate procedure is developed for analyzing these antennas. Designs are presented for low-cost microwave/millimeter-wave phased-array transceivers with extremely broad bandwidth. The target applications for these systems are mobile satellite communications and ultra-wideband radar. Monolithic PIN diodes are a useful technology, especially suited for building miniaturized control components in microwave and millimeter-wave phased arrays. This dissertation demonstrates a new strategy for extracting bias-dependent small-signal models for monolithic PIN diodes. The space solar-power satellite (SPS) is a visionary plan that involves beaming electrical power from outer space to the earth using a high-power microwave beam. Such a system must have retrodirective control so that the high-power beam always points on target. This dissertation presents a new phased-array architecture for the SPS system that could considerably reduce its overall cost and complexity. In short, this dissertation presents technologies and techniques that reduce the cost of beam steering at microwave and millimeter-wave frequencies. The results of this work should have a far-ranging impact on the future of wireless systems.

Proceedings

Proceedings PDF Author:
Publisher:
ISBN:
Category : Aerospace telemetry
Languages : en
Pages : 576

Get Book Here

Book Description


NASA SP.

NASA SP. PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 782

Get Book Here

Book Description


International Aerospace Abstracts

International Aerospace Abstracts PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 980

Get Book Here

Book Description