Rethinking the Foundations of Statistics

Rethinking the Foundations of Statistics PDF Author: Joseph B. Kadane
Publisher: Cambridge University Press
ISBN: 9780521649759
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
This important collection of essays is a synthesis of foundational studies in Bayesian decision theory and statistics. An overarching topic of the collection is understanding how the norms for Bayesian decision making should apply in settings with more than one rational decision maker and then tracing out some of the consequences of this turn for Bayesian statistics. There are four principal themes to the collection: cooperative, non-sequential decisions; the representation and measurement of 'partially ordered' preferences; non-cooperative, sequential decisions; and pooling rules and Bayesian dynamics for sets of probabilities. The volume will be particularly valuable to philosophers concerned with decision theory, probability, and statistics, statisticians, mathematicians, and economists.

Rethinking the Foundations of Statistics

Rethinking the Foundations of Statistics PDF Author: Joseph B. Kadane
Publisher: Cambridge University Press
ISBN: 9780521649759
Category : Mathematics
Languages : en
Pages : 402

Get Book Here

Book Description
This important collection of essays is a synthesis of foundational studies in Bayesian decision theory and statistics. An overarching topic of the collection is understanding how the norms for Bayesian decision making should apply in settings with more than one rational decision maker and then tracing out some of the consequences of this turn for Bayesian statistics. There are four principal themes to the collection: cooperative, non-sequential decisions; the representation and measurement of 'partially ordered' preferences; non-cooperative, sequential decisions; and pooling rules and Bayesian dynamics for sets of probabilities. The volume will be particularly valuable to philosophers concerned with decision theory, probability, and statistics, statisticians, mathematicians, and economists.

Statistical Rethinking

Statistical Rethinking PDF Author: Richard McElreath
Publisher: CRC Press
ISBN: 1315362619
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.

The Foundations of Statistics

The Foundations of Statistics PDF Author: Leonard J. Savage
Publisher: Courier Corporation
ISBN: 0486137104
Category : Mathematics
Languages : en
Pages : 341

Get Book Here

Book Description
Classic analysis of the foundations of statistics and development of personal probability, one of the greatest controversies in modern statistical thought. Revised edition. Calculus, probability, statistics, and Boolean algebra are recommended.

Think Stats

Think Stats PDF Author: Allen B. Downey
Publisher: "O'Reilly Media, Inc."
ISBN: 1449313108
Category : Computers
Languages : en
Pages : 137

Get Book Here

Book Description
If you know how to program, you have the skills to turn data into knowledge using the tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts. Develop your understanding of probability and statistics by writing and testing code Run experiments to test statistical behavior, such as generating samples from several distributions Use simulations to understand concepts that are hard to grasp mathematically Learn topics not usually covered in an introductory course, such as Bayesian estimation Import data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics tools Use statistical inference to answer questions about real-world data

Statistical Inference as Severe Testing

Statistical Inference as Severe Testing PDF Author: Deborah G. Mayo
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503

Get Book Here

Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.

Statistical Rules of Thumb

Statistical Rules of Thumb PDF Author: Gerald van Belle
Publisher: John Wiley & Sons
ISBN: 1118210360
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
Praise for the First Edition: "For a beginner [this book] is a treasure trove; for an experienced person it can provide new ideas on how better to pursue the subject of applied statistics." —Journal of Quality Technology Sensibly organized for quick reference, Statistical Rules of Thumb, Second Edition compiles simple rules that are widely applicable, robust, and elegant, and each captures key statistical concepts. This unique guide to the use of statistics for designing, conducting, and analyzing research studies illustrates real-world statistical applications through examples from fields such as public health and environmental studies. Along with an insightful discussion of the reasoning behind every technique, this easy-to-use handbook also conveys the various possibilities statisticians must think of when designing and conducting a study or analyzing its data. Each chapter presents clearly defined rules related to inference, covariation, experimental design, consultation, and data representation, and each rule is organized and discussed under five succinct headings: introduction; statement and illustration of the rule; the derivation of the rule; a concluding discussion; and exploration of the concept's extensions. The author also introduces new rules of thumb for topics such as sample size for ratio analysis, absolute and relative risk, ANCOVA cautions, and dichotomization of continuous variables. Additional features of the Second Edition include: Additional rules on Bayesian topics New chapters on observational studies and Evidence-Based Medicine (EBM) Additional emphasis on variation and causation Updated material with new references, examples, and sources A related Web site provides a rich learning environment and contains additional rules, presentations by the author, and a message board where readers can share their own strategies and discoveries. Statistical Rules of Thumb, Second Edition is an ideal supplementary book for courses in experimental design and survey research methods at the upper-undergraduate and graduate levels. It also serves as an indispensable reference for statisticians, researchers, consultants, and scientists who would like to develop an understanding of the statistical foundations of their research efforts. A related website www.vanbelle.org provides additional rules, author presentations and more.

Probability, Statistics, and Data

Probability, Statistics, and Data PDF Author: Darrin Speegle
Publisher: CRC Press
ISBN: 1000504514
Category : Business & Economics
Languages : en
Pages : 644

Get Book Here

Book Description
This book is a fresh approach to a calculus based, first course in probability and statistics, using R throughout to give a central role to data and simulation. The book introduces probability with Monte Carlo simulation as an essential tool. Simulation makes challenging probability questions quickly accessible and easily understandable. Mathematical approaches are included, using calculus when appropriate, but are always connected to experimental computations. Using R and simulation gives a nuanced understanding of statistical inference. The impact of departure from assumptions in statistical tests is emphasized, quantified using simulations, and demonstrated with real data. The book compares parametric and non-parametric methods through simulation, allowing for a thorough investigation of testing error and power. The text builds R skills from the outset, allowing modern methods of resampling and cross validation to be introduced along with traditional statistical techniques. Fifty-two data sets are included in the complementary R package fosdata. Most of these data sets are from recently published papers, so that you are working with current, real data, which is often large and messy. Two central chapters use powerful tidyverse tools (dplyr, ggplot2, tidyr, stringr) to wrangle data and produce meaningful visualizations. Preliminary versions of the book have been used for five semesters at Saint Louis University, and the majority of the more than 400 exercises have been classroom tested.

The Theory of Probability

The Theory of Probability PDF Author: Harold Jeffreys
Publisher: OUP Oxford
ISBN: 0191589675
Category : Science
Languages : en
Pages : 474

Get Book Here

Book Description
Another title in the reissued Oxford Classic Texts in the Physical Sciences series, Jeffrey's Theory of Probability, first published in 1939, was the first to develop a fundamental theory of scientific inference based on the ideas of Bayesian statistics. His ideas were way ahead of their time and it is only in the past ten years that the subject of Bayes' factors has been significantly developed and extended. Until recently the two schools of statistics (Bayesian and Frequentist) were distinctly different and set apart. Recent work (aided by increased computer power and availability) has changed all that and today's graduate students and researchers all require an understanding of Bayesian ideas. This book is their starting point.

Foundations of Real-World Economics

Foundations of Real-World Economics PDF Author: John Komlos
Publisher: Routledge
ISBN: 1351584715
Category : Business & Economics
Languages : en
Pages : 307

Get Book Here

Book Description
The 2008 financial crisis, the rise of Trumpism and the other populist movements which have followed in their wake have grown out of the frustrations of those hurt by the economic policies advocated by conventional economists for generations. Despite this, textbooks continue to praise conventional policies such as deregulation and hyperglobalization. This textbook demonstrates how misleading it can be to apply oversimplified models of perfect competition to the real world. The math works well on college blackboards but not so well on the Main Streets of America. This volume explores the realities of oligopolies, the real impact of the minimum wage, the double-edged sword of free trade, and other ways in which powerful institutions cause distortions in the mainstream models. Bringing together the work of key scholars, such as Kahneman, Minsky, and Schumpeter, this book demonstrates how we should take into account the inefficiencies that arise due to asymmetric information, mental biases, unequal distribution of wealth and power, and the manipulation of demand. This textbook offers students a valuable introductory text with insights into the workings of real markets not just imaginary ones formulated by blackboard economists. A must-have for students studying the principles of economics as well as micro- and macroeconomics, this textbook redresses the existing imbalance in economic teaching. Instead of clinging to an ideology that only enriched the 1%, Komlos sketches the outline of a capitalism with a human face, an economy in which people live contented lives with dignity instead of focusing on GNP.

Bayesian Data Analysis, Third Edition

Bayesian Data Analysis, Third Edition PDF Author: Andrew Gelman
Publisher: CRC Press
ISBN: 1439840954
Category : Mathematics
Languages : en
Pages : 677

Get Book Here

Book Description
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.