Resolution Enhancement Techniques in Optical Lithography

Resolution Enhancement Techniques in Optical Lithography PDF Author: Alfred Kwok-Kit Wong
Publisher: SPIE Press
ISBN: 9780819439956
Category : Science
Languages : en
Pages : 238

Get Book

Book Description
Ever-smaller IC devices are pushing the optical lithography envelope, increasing the importance of resolution enhancement techniques. This tutorial encompasses two decades of research. It discusses theoretical and practical aspects of commonly used techniques, including optical imaging and resolution, modified illumination, optical proximity correction, alternating and attenuating phase-shifting masks, selecting RETs, and second-generation RETs. Useful for students and practicing lithographers

Resolution Enhancement Techniques in Optical Lithography

Resolution Enhancement Techniques in Optical Lithography PDF Author: Alfred Kwok-Kit Wong
Publisher: SPIE Press
ISBN: 9780819439956
Category : Science
Languages : en
Pages : 238

Get Book

Book Description
Ever-smaller IC devices are pushing the optical lithography envelope, increasing the importance of resolution enhancement techniques. This tutorial encompasses two decades of research. It discusses theoretical and practical aspects of commonly used techniques, including optical imaging and resolution, modified illumination, optical proximity correction, alternating and attenuating phase-shifting masks, selecting RETs, and second-generation RETs. Useful for students and practicing lithographers

Selected Papers on Resolution Enhancement Techniques in Optical Lithography

Selected Papers on Resolution Enhancement Techniques in Optical Lithography PDF Author: F. M. Schellenberg
Publisher: SPIE-International Society for Optical Engineering
ISBN:
Category : Integrated circuits
Languages : en
Pages : 910

Get Book

Book Description
Optical lithography for integrated circuits is undergoing a renaissance with the adoption of Resolution Enhancement Technology (RET). Some RET concepts have become routine in manufacturing. This volume gathers together seminal RET papers.

Selected Papers on Resolution Enhancement Techniques in Optical Lithography

Selected Papers on Resolution Enhancement Techniques in Optical Lithography PDF Author: F. M. Schellenberg
Publisher:
ISBN: 9781628413656
Category :
Languages : en
Pages : 896

Get Book

Book Description
Optical lithography for integrated circuits is undergoing a renaissance with the adoption of resolution enhancement techniques (RET). Some RET concepts have become routine in manufacturing, almost two decades after the original applications were conceived. This volume gathers together seminal RET papers. Since many of the first applications were announced by Japanese authors well before the material was presented in English, some of the original Japanese papers are included plus their English translations.

Resolution Enhancement Techniques in Optical Lithography

Resolution Enhancement Techniques in Optical Lithography PDF Author: Alfred K. Wong
Publisher:
ISBN: 9780819478627
Category :
Languages : en
Pages : 0

Get Book

Book Description
Ever-smaller IC devices are pushing the optical lithography envelope, increasing the importance of resolution enhancement techniques. This tutorial encompasses two decades of research. It discusses theoretical and practical aspects of commonly used techniques, including optical imaging and resolution, modified illumination, optical proximity correction, alternating and attenuating phase-shifting masks, selecting RETs, and second-generation RETs. Useful for students and practicing lithographers.

Computational Lithography

Computational Lithography PDF Author: Xu Ma
Publisher: John Wiley & Sons
ISBN: 111804357X
Category : Technology & Engineering
Languages : en
Pages : 225

Get Book

Book Description
A Unified Summary of the Models and Optimization Methods Used in Computational Lithography Optical lithography is one of the most challenging areas of current integrated circuit manufacturing technology. The semiconductor industry is relying more on resolution enhancement techniques (RETs), since their implementation does not require significant changes in fabrication infrastructure. Computational Lithography is the first book to address the computational optimization of RETs in optical lithography, providing an in-depth discussion of optimal optical proximity correction (OPC), phase shifting mask (PSM), and off-axis illumination (OAI) RET tools that use model-based mathematical optimization approaches. The book starts with an introduction to optical lithography systems, electric magnetic field principles, and the fundamentals of optimization from a mathematical point of view. It goes on to describe in detail different types of optimization algorithms to implement RETs. Most of the algorithms developed are based on the application of the OPC, PSM, and OAI approaches and their combinations. Algorithms for coherent illumination as well as partially coherent illumination systems are described, and numerous simulations are offered to illustrate the effectiveness of the algorithms. In addition, mathematical derivations of all optimization frameworks are presented. The accompanying MATLAB® software files for all the RET methods described in the book make it easy for readers to run and investigate the codes in order to understand and apply the optimization algorithms, as well as to design a set of optimal lithography masks. The codes may also be used by readers for their research and development activities in their academic or industrial organizations. An accompanying MATLAB® software guide is also included. An accompanying MATLAB® software guide is included, and readers can download the software to use with the guide at ftp://ftp.wiley.com/public/sci_tech_med/computational_lithography. Tailored for both entry-level and experienced readers, Computational Lithography is meant for faculty, graduate students, and researchers, as well as scientists and engineers in industrial organizations whose research or career field is semiconductor IC fabrication, optical lithography, and RETs. Computational lithography draws from the rich theory of inverse problems, optics, optimization, and computational imaging; as such, the book is also directed to researchers and practitioners in these fields.

Field Guide to Optical Lithography

Field Guide to Optical Lithography PDF Author: Chris A. Mack
Publisher: Society of Photo Optical
ISBN: 9780819462077
Category : Technology & Engineering
Languages : en
Pages : 122

Get Book

Book Description
This Field Guide distills the material written by Chris Mack over the past 20 years, including notes from his graduate-level lithography course at the University of Texas at Austin. It details the lithography process, image formation, imaging onto a photoresist, photoresist chemistry, and lithography control and optimization. An introduction to next-generation lithographic technologies is also included, as well as an extensive lithography glossary and a summation of salient equations critical to anyone involved in the lithography industry.

Fundamental Principles of Optical Lithography

Fundamental Principles of Optical Lithography PDF Author: Chris Mack
Publisher: John Wiley & Sons
ISBN: 1119965071
Category : Technology & Engineering
Languages : en
Pages : 503

Get Book

Book Description
The fabrication of an integrated circuit requires a variety of physical and chemical processes to be performed on a semiconductor substrate. In general, these processes fall into three categories: film deposition, patterning, and semiconductor doping. Films of both conductors and insulators are used to connect and isolate transistors and their components. By creating structures of these various components millions of transistors can be built and wired together to form the complex circuitry of modern microelectronic devices. Fundamental to all of these processes is lithography, ie, the formation of three-dimensional relief images on the substrate for subsequent transfer of the pattern to the substrate. This book presents a complete theoretical and practical treatment of the topic of lithography for both students and researchers. It comprises ten detailed chapters plus three appendices with problems provided at the end of each chapter. Additional Information: Visiting http://www.lithoguru.com/textbook/index.html enhances the reader's understanding as the website supplies information on how you can download a free laboratory manual, Optical Lithography Modelling with MATLAB®, to accompany the textbook. You can also contact the author and find help for instructors.

Optical Lithography

Optical Lithography PDF Author: Burn Jeng Lin
Publisher: SPIE-International Society for Optical Engineering
ISBN: 9781510639959
Category : Lasers
Languages : en
Pages : 0

Get Book

Book Description
This book is written for new and experienced engineers, technology managers, and senior technicians who want to enrich their understanding of the image formation physics of a lithographic system. Readers will gain knowledge of the basic equations and constants that drive optical lithography, learn the basics of exposure systems and image formation, and come away with a full understanding of system components, processing, and optimization. Readers will also get an overview of the outlook of optical lithography and means to enhance semiconductor manufacturing. This second edition blends the author's unique experience in research, teaching, and world-class high-volume manufacturing to add brand new material on proximity printing, as well as updated and expanded material on exposure systems, image formation, E-D methodology, hardware components, processing and optimization, and EUV and immersion lithographies.

Optical and EUV Lithography

Optical and EUV Lithography PDF Author: Andreas Erdmann
Publisher:
ISBN: 9781510639010
Category :
Languages : en
Pages :

Get Book

Book Description


Nanolithography

Nanolithography PDF Author: M Feldman
Publisher: Woodhead Publishing
ISBN: 0857098756
Category : Technology & Engineering
Languages : en
Pages : 599

Get Book

Book Description
Integrated circuits, and devices fabricated using the techniques developed for integrated circuits, have steadily gotten smaller, more complex, and more powerful. The rate of shrinking is astonishing – some components are now just a few dozen atoms wide. This book attempts to answer the questions, “What comes next? and “How do we get there? Nanolithography outlines the present state of the art in lithographic techniques, including optical projection in both deep and extreme ultraviolet, electron and ion beams, and imprinting. Special attention is paid to related issues, such as the resists used in lithography, the masks (or lack thereof), the metrology needed for nano-features, modeling, and the limitations caused by feature edge roughness. In addition emerging technologies are described, including the directed assembly of wafer features, nanostructures and devices, nano-photonics, and nano-fluidics. This book is intended as a guide to the researcher new to this field, reading related journals or facing the complexities of a technical conference. Its goal is to give enough background information to enable such a researcher to understand, and appreciate, new developments in nanolithography, and to go on to make advances of his/her own. Outlines the current state of the art in alternative nanolithography technologies in order to cope with the future reduction in size of semiconductor chips to nanoscale dimensions Covers lithographic techniques, including optical projection, extreme ultraviolet (EUV), nanoimprint, electron beam and ion beam lithography Describes the emerging applications of nanolithography in nanoelectronics, nanophotonics and microfluidics