Representations and Cohomology: Volume 2, Cohomology of Groups and Modules

Representations and Cohomology: Volume 2, Cohomology of Groups and Modules PDF Author: D. J. Benson
Publisher: Cambridge University Press
ISBN: 9780521636520
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
A further introduction to modern developments in the representation theory of finite groups and associative algebras.

Representations and Cohomology: Volume 2, Cohomology of Groups and Modules

Representations and Cohomology: Volume 2, Cohomology of Groups and Modules PDF Author: D. J. Benson
Publisher: Cambridge University Press
ISBN: 9780521636520
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
A further introduction to modern developments in the representation theory of finite groups and associative algebras.

Representations and Cohomology: Volume 1, Basic Representation Theory of Finite Groups and Associative Algebras

Representations and Cohomology: Volume 1, Basic Representation Theory of Finite Groups and Associative Algebras PDF Author: D. J. Benson
Publisher: Cambridge University Press
ISBN: 9780521636537
Category : Mathematics
Languages : en
Pages : 260

Get Book Here

Book Description
An introduction to modern developments in the representation theory of finite groups and associative algebras.

Representations of Algebraic Groups

Representations of Algebraic Groups PDF Author: Jens Carsten Jantzen
Publisher: American Mathematical Soc.
ISBN: 082184377X
Category : Mathematics
Languages : en
Pages : 594

Get Book Here

Book Description
Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.

Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action

Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action PDF Author: A. Bialynicki-Birula
Publisher: Springer Science & Business Media
ISBN: 3662050714
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
This is the second volume of the new subseries "Invariant Theory and Algebraic Transformation Groups". The aim of the survey by A. Bialynicki-Birula is to present the main trends and achievements of research in the theory of quotients by actions of algebraic groups. This theory contains geometric invariant theory with various applications to problems of moduli theory. The contribution by J. Carrell treats the subject of torus actions on algebraic varieties, giving a detailed exposition of many of the cohomological results one obtains from having a torus action with fixed points. Many examples, such as toric varieties and flag varieties, are discussed in detail. W.M. McGovern studies the actions of a semisimple Lie or algebraic group on its Lie algebra via the adjoint action and on itself via conjugation. His contribution focuses primarily on nilpotent orbits that have found the widest application to representation theory in the last thirty-five years.

Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups

Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups PDF Author: Armand Borel
Publisher: American Mathematical Soc.
ISBN: 147041225X
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
It has been nearly twenty years since the first edition of this work. In the intervening years, there has been immense progress in the use of homological algebra to construct admissible representations and in the study of arithmetic groups. This second edition is a corrected and expanded version of the original, which was an important catalyst in the expansion of the field. Besides the fundamental material on cohomology and discrete subgroups present in the first edition, this edition also contains expositions of some of the most important developments of the last two decades.

Representation Theory

Representation Theory PDF Author: Alexander Zimmermann
Publisher: Springer
ISBN: 3319079689
Category : Mathematics
Languages : en
Pages : 720

Get Book Here

Book Description
Introducing the representation theory of groups and finite dimensional algebras, first studying basic non-commutative ring theory, this book covers the necessary background on elementary homological algebra and representations of groups up to block theory. It further discusses vertices, defect groups, Green and Brauer correspondences and Clifford theory. Whenever possible the statements are presented in a general setting for more general algebras, such as symmetric finite dimensional algebras over a field. Then, abelian and derived categories are introduced in detail and are used to explain stable module categories, as well as derived categories and their main invariants and links between them. Group theoretical applications of these theories are given – such as the structure of blocks of cyclic defect groups – whenever appropriate. Overall, many methods from the representation theory of algebras are introduced. Representation Theory assumes only the most basic knowledge of linear algebra, groups, rings and fields and guides the reader in the use of categorical equivalences in the representation theory of groups and algebras. As the book is based on lectures, it will be accessible to any graduate student in algebra and can be used for self-study as well as for classroom use.

Cohomology Rings of Finite Groups

Cohomology Rings of Finite Groups PDF Author: Jon F. Carlson
Publisher: Springer Science & Business Media
ISBN: 9401702152
Category : Mathematics
Languages : en
Pages : 782

Get Book Here

Book Description
Group cohomology has a rich history that goes back a century or more. Its origins are rooted in investigations of group theory and num ber theory, and it grew into an integral component of algebraic topology. In the last thirty years, group cohomology has developed a powerful con nection with finite group representations. Unlike the early applications which were primarily concerned with cohomology in low degrees, the in teractions with representation theory involve cohomology rings and the geometry of spectra over these rings. It is this connection to represen tation theory that we take as our primary motivation for this book. The book consists of two separate pieces. Chronologically, the first part was the computer calculations of the mod-2 cohomology rings of the groups whose orders divide 64. The ideas and the programs for the calculations were developed over the last 10 years. Several new features were added over the course of that time. We had originally planned to include only a brief introduction to the calculations. However, we were persuaded to produce a more substantial text that would include in greater detail the concepts that are the subject of the calculations and are the source of some of the motivating conjectures for the com putations. We have gathered together many of the results and ideas that are the focus of the calculations from throughout the mathematical literature.

Cohomological Induction and Unitary Representations (PMS-45), Volume 45

Cohomological Induction and Unitary Representations (PMS-45), Volume 45 PDF Author: Anthony W. Knapp
Publisher: Princeton University Press
ISBN: 1400883938
Category : Mathematics
Languages : en
Pages : 968

Get Book Here

Book Description
This book offers a systematic treatment--the first in book form--of the development and use of cohomological induction to construct unitary representations. George Mackey introduced induction in 1950 as a real analysis construction for passing from a unitary representation of a closed subgroup of a locally compact group to a unitary representation of the whole group. Later a parallel construction using complex analysis and its associated co-homology theories grew up as a result of work by Borel, Weil, Harish-Chandra, Bott, Langlands, Kostant, and Schmid. Cohomological induction, introduced by Zuckerman, is an algebraic analog that is technically more manageable than the complex-analysis construction and leads to a large repertory of irreducible unitary representations of reductive Lie groups. The book, which is accessible to students beyond the first year of graduate school, will interest mathematicians and physicists who want to learn about and take advantage of the algebraic side of the representation theory of Lie groups. Cohomological Induction and Unitary Representations develops the necessary background in representation theory and includes an introductory chapter of motivation, a thorough treatment of the "translation principle," and four appendices on algebra and analysis.

Cohomology of Groups

Cohomology of Groups PDF Author: Kenneth S. Brown
Publisher: Springer Science & Business Media
ISBN: 1468493272
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.

An Introduction to Galois Cohomology and its Applications

An Introduction to Galois Cohomology and its Applications PDF Author: Grégory Berhuy
Publisher: Cambridge University Press
ISBN: 1139490885
Category : Mathematics
Languages : en
Pages : 328

Get Book Here

Book Description
This is the first detailed elementary introduction to Galois cohomology and its applications. The introductory section is self-contained and provides the basic results of the theory. Assuming only a minimal background in algebra, the main purpose of this book is to prepare graduate students and researchers for more advanced study.