Representation Theory of Finite Monoids

Representation Theory of Finite Monoids PDF Author: Benjamin Steinberg
Publisher: Springer
ISBN: 3319439324
Category : Mathematics
Languages : en
Pages : 324

Get Book Here

Book Description
This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford –Munn–Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Möbius inversion.

Representation Theory of Finite Monoids

Representation Theory of Finite Monoids PDF Author: Benjamin Steinberg
Publisher: Springer
ISBN: 3319439324
Category : Mathematics
Languages : en
Pages : 324

Get Book Here

Book Description
This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford –Munn–Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Möbius inversion.

Representation Theory of Finite Groups

Representation Theory of Finite Groups PDF Author: Benjamin Steinberg
Publisher: Springer Science & Business Media
ISBN: 1461407761
Category : Mathematics
Languages : en
Pages : 166

Get Book Here

Book Description
This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.

Introduction to Representation Theory

Introduction to Representation Theory PDF Author: Pavel I. Etingof
Publisher: American Mathematical Soc.
ISBN: 0821853511
Category : Mathematics
Languages : en
Pages : 240

Get Book Here

Book Description
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.

Finitely Generated Commutative Monoids

Finitely Generated Commutative Monoids PDF Author: J. C. Rosales
Publisher: Nova Publishers
ISBN: 9781560726708
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
A textbook for an undergraduate course, requiring only a knowledge of basic linear algebra. Explains how to compute presentations for finitely generated cancellative monoids, and from a presentation of a monoid, decide whether this monoid is cancellative, reduced, separative, finite, torsion free, group, affine, full, normal, etc. Of most interest to people working with semigroup theory, but also in other areas of algebra. Annotation copyrighted by Book News, Inc., Portland, OR

Cell Complexes, Poset Topology and the Representation Theory of Algebras Arising in Algebraic Combinatorics and Discrete Geometry

Cell Complexes, Poset Topology and the Representation Theory of Algebras Arising in Algebraic Combinatorics and Discrete Geometry PDF Author: Stuart Margolis
Publisher: American Mathematical Society
ISBN: 1470450429
Category : Mathematics
Languages : en
Pages : 135

Get Book Here

Book Description
View the abstract.

Linear Algebraic Monoids

Linear Algebraic Monoids PDF Author: Lex E. Renner
Publisher: Springer Science & Business Media
ISBN: 9783540242413
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
The theory of linear algebraic monoids culminates in a coherent blend of algebraic groups, convex geometry, and semigroup theory. The book discusses all the key topics in detail, including classification, orbit structure, representations, universal constructions, and abstract analogues. An explicit cell decomposition is constructed for the wonderful compactification, as is a universal deformation for any semisimple group. A final chapter summarizes important connections with other areas of algebra and geometry. The book will serve as a solid basis for further research. Open problems are discussed as they arise and many useful exercises are included.

Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics

Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics PDF Author: Mahir Can
Publisher: Springer
ISBN: 149390938X
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: structure and representation theory of reductive algebraic monoids monoid schemes and applications of monoids monoids related to Lie theory equivariant embeddings of algebraic groups constructions and properties of monoids from algebraic combinatorics endomorphism monoids induced from vector bundles Hodge–Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semi groups are strongly π-regular. Graduate students as well as researchers working in the fields of algebraic (semi)group theory, algebraic combinatorics and the theory of algebraic group embeddings will benefit from this unique and broad compilation of some fundamental results in (semi)group theory, algebraic group embeddings and algebraic combinatorics merged under the umbrella of algebraic monoids.

The q-theory of Finite Semigroups

The q-theory of Finite Semigroups PDF Author: John Rhodes
Publisher: Springer Science & Business Media
ISBN: 0387097813
Category : Mathematics
Languages : en
Pages : 674

Get Book Here

Book Description
This comprehensive, encyclopedic text in four parts aims to give the reader — from the graduate student to the researcher/practitioner — a detailed understanding of modern finite semigroup theory, focusing in particular on advanced topics on the cutting edge of research. The q-theory of Finite Semigroups presents important techniques and results, many for the first time in book form, thereby updating and modernizing the semigroup theory literature.

Topics in Hyperplane Arrangements

Topics in Hyperplane Arrangements PDF Author: Marcelo Aguiar
Publisher: American Mathematical Soc.
ISBN: 1470437112
Category : Mathematics
Languages : en
Pages : 639

Get Book Here

Book Description
This monograph studies the interplay between various algebraic, geometric and combinatorial aspects of real hyperplane arrangements. It provides a careful, organized and unified treatment of several recent developments in the field, and brings forth many new ideas and results. It has two parts, each divided into eight chapters, and five appendices with background material. Part I gives a detailed discussion on faces, flats, chambers, cones, gallery intervals, lunes and other geometric notions associated with arrangements. The Tits monoid plays a central role. Another important object is the category of lunes which generalizes the classical associative operad. Also discussed are the descent and lune identities, distance functions on chambers, and the combinatorics of the braid arrangement and related examples. Part II studies the structure and representation theory of the Tits algebra of an arrangement. It gives a detailed analysis of idempotents and Peirce decompositions, and connects them to the classical theory of Eulerian idempotents. It introduces the space of Lie elements of an arrangement which generalizes the classical Lie operad. This space is the last nonzero power of the radical of the Tits algebra. It is also the socle of the left ideal of chambers and of the right ideal of Zie elements. Zie elements generalize the classical Lie idempotents. They include Dynkin elements associated to generic half-spaces which generalize the classical Dynkin idempotent. Another important object is the lune-incidence algebra which marks the beginning of noncommutative Möbius theory. These ideas are also brought upon the study of the Solomon descent algebra. The monograph is written with clarity and in sufficient detail to make it accessible to graduate students. It can also serve as a useful reference to experts.

Finite Semigroups And Universal Algebra

Finite Semigroups And Universal Algebra PDF Author: Jorge Almeida
Publisher: World Scientific
ISBN: 9814501565
Category : Mathematics
Languages : en
Pages : 532

Get Book Here

Book Description
Motivated by applications in theoretical computer science, the theory of finite semigroups has emerged in recent years as an autonomous area of mathematics. It fruitfully combines methods, ideas and constructions from algebra, combinatorics, logic and topology. In simple terms, the theory aims at a classification of finite semigroups in certain classes called “pseudovarieties”. The classifying characteristics have both structural and syntactical aspects, the general connection between them being part of universal algebra. Besides providing a foundational study of the theory in the setting of arbitrary abstract finite algebras, this book stresses the syntactical approach to finite semigroups. This involves studying (relatively) free and profinite free semigroups and their presentations. The techniques used are illustrated in a systematic study of various operators on pseudovarieties of semigroups.