Remote Powering and Data Communication for Implanted Biomedical Systems

Remote Powering and Data Communication for Implanted Biomedical Systems PDF Author: Enver Gurhan Kilinc
Publisher: Springer
ISBN: 331921179X
Category : Technology & Engineering
Languages : en
Pages : 152

Get Book Here

Book Description
This book describes new circuits and systems for implantable biomedical applications and explains the design of a batteryless, remotely-powered implantable micro-system, designed for long-term patient monitoring. Following new trends in implantable biomedical applications, the authors demonstrate a system which is capable of efficient, remote powering and reliable data communication. Novel architecture and design methodologies are used to transfer power with a low-power, optimized inductive link and data is transmitted by a reliable communication link. Additionally, an electro-mechanical solution is presented for tracking and monitoring the implantable system, while the patient is mobile.

Remote Powering and Data Communication for Implanted Biomedical Systems

Remote Powering and Data Communication for Implanted Biomedical Systems PDF Author: Enver Gurhan Kilinc
Publisher: Springer
ISBN: 331921179X
Category : Technology & Engineering
Languages : en
Pages : 152

Get Book Here

Book Description
This book describes new circuits and systems for implantable biomedical applications and explains the design of a batteryless, remotely-powered implantable micro-system, designed for long-term patient monitoring. Following new trends in implantable biomedical applications, the authors demonstrate a system which is capable of efficient, remote powering and reliable data communication. Novel architecture and design methodologies are used to transfer power with a low-power, optimized inductive link and data is transmitted by a reliable communication link. Additionally, an electro-mechanical solution is presented for tracking and monitoring the implantable system, while the patient is mobile.

Wireless Power Transfer and Data Communication for Intracranial Neural Recording Applications

Wireless Power Transfer and Data Communication for Intracranial Neural Recording Applications PDF Author: Kerim Türe
Publisher: Springer Nature
ISBN: 3030408264
Category : Technology & Engineering
Languages : en
Pages : 119

Get Book Here

Book Description
This book describes new circuits and systems for implantable wireless neural monitoring systems and explains the design of a batteryless, remotely-powered implantable micro-system, designed for continuous neural monitoring. Following new trends in implantable biomedical applications, the authors demonstrate a system which is capable of efficient remote powering and reliable data communication. Novel architecture and design methodologies are used for low power and small area wireless communication link. Additionally, hermetically sealed packaging and in-vivo validation of the implantable device is presented.

Ultrasound Energy and Data Transfer for Medical Implants

Ultrasound Energy and Data Transfer for Medical Implants PDF Author: Francesco Mazzilli
Publisher: Springer Nature
ISBN: 3030490041
Category : Technology & Engineering
Languages : en
Pages : 172

Get Book Here

Book Description
This book presents new systems and circuits for implantable biomedical applications, using a non-conventional way to transmit energy and data via ultrasound. The authors discuses the main constrains (e.g. implant size, battery recharge time, data rate, accuracy of the acoustic models) from the definition of the ultrasound system specification to the in-vitro validation.The system described meets the safety requirements for ultrasound exposure limits in diagnostic ultrasound applications, according to FDA regulations. Readers will see how the novel design of power management architecture will meet the constraints set by FDA regulations for maximum energy exposure in the human body. Coverage also includes the choice of the acoustic transducer, driven by optimum positioning and size of the implanted medical device. Throughout the book, links between physics, electronics and medical aspects are covered to give a complete view of the ultrasound system described. Provides a complete, system-level perspective on the use of ultrasound as energy source for medical implants; Discusses system design concerns regarding wireless power transmission and wireless data communication, particularly for a system in which both are performed on the same channel/frequency; Describes an experimental study on implantable battery powered biomedical systems; Presents a fully-integrated, implantable system and hermetically sealed packaging.

Wireless Power Transfer and Data Communication for Neural Implants

Wireless Power Transfer and Data Communication for Neural Implants PDF Author: Gürkan Yilmaz
Publisher: Springer
ISBN: 331949337X
Category : Technology & Engineering
Languages : en
Pages : 119

Get Book Here

Book Description
This book presents new circuits and systems for implantable biomedical applications targeting neural recording. The authors describe a system design adapted to conform to the requirements of an epilepsy monitoring system. Throughout the book, these requirements are reflected in terms of implant size, power consumption, and data rate. In addition to theoretical background which explains the relevant technical challenges, the authors provide practical, step-by-step solutions to these problems. Readers will gain understanding of the numerical values in such a system, enabling projections for feasibility of new projects.

Inductive Links for Wireless Power Transfer

Inductive Links for Wireless Power Transfer PDF Author: Pablo Pérez-Nicoli
Publisher: Springer Nature
ISBN: 303065477X
Category : Technology & Engineering
Languages : en
Pages : 230

Get Book Here

Book Description
This book presents a system-level analysis of inductive wireless power transfer (WPT) links. The basic requirements, design parameters, and utility of key building blocks used in inductive WPT links are presented, followed by detailed theoretical analysis, design, and optimization procedure, while considering practical aspects for various application domains. Readers are provided with fundamental, yet easy to follow guidelines to help them design high-efficiency inductive links, based on a set of application-specific target specifications. The authors discuss a wide variety of recently proposed approaches to achieve the maximum efficiency point, such as the use of additional resonant coils, matching networks, modulation of the load quality factor (Q-modulation), and adjustable DC-DC converters. Additionally, the attainability of the maximum efficiency point together with output voltage regulation is addressed in a closed-loop power control mechanism. Numerous examples, including MATLAB/Octave calculation scripts and LTspice simulation files, are presented throughout the book. This enables readers to check their own results and test variations, facilitating a thorough understanding of the concepts discussed. The book concludes with real examples demonstrating the practical application of topics discussed. Covers both introductory and advanced levels of theory and practice, providing readers with required knowledge and tools to carry on from simple to advanced wireless power transfer concepts and system designs; Provides theoretical foundation throughout the book to address different design aspects; Presents numerous examples throughout the book to complement the analysis and designs; Includes supplementary material (numerical and circuit simulation files) that provide a "hands-on" experience for the reader; Uses real examples to demonstrate the practical application of topics discussed.

Omnidirectional Inductive Powering for Biomedical Implants

Omnidirectional Inductive Powering for Biomedical Implants PDF Author: Bert Lenaerts
Publisher: Springer Science & Business Media
ISBN: 1402090757
Category : Technology & Engineering
Languages : en
Pages : 230

Get Book Here

Book Description
Omnidirectional Inductive Powering for Biomedical Implants investigates the feasibility of inductive powering for capsule endoscopy and freely moving systems in general. The main challenge is the random position and orientation of the power receiving system with respect to the emitting magnetic field. Where classic inductive powering assumes a predictable or fixed alignment of the respective coils, the remote system is now free to adopt just any orientation while still maintaining full power capabilities. Before elaborating on different approaches towards omnidirectional powering, the design and optimisation of a general inductive power link is discussed in all its aspects. Special attention is paid to the interaction of the inductive power link with the patient’s body. Putting theory into practice, the implementation of an inductive power link for a capsule endoscope is included in a separate chapter.

Biomedical Knowledge Management: Infrastructures and Processes for E-Health Systems

Biomedical Knowledge Management: Infrastructures and Processes for E-Health Systems PDF Author: Pease, Wayne
Publisher: IGI Global
ISBN: 1605662674
Category : Technology & Engineering
Languages : en
Pages : 412

Get Book Here

Book Description
"This book provides multidisciplinary best practices and experiences in knowledge management relevant to the healthcare industry"--Provided by publisher.

Smart system for invasive measurement of biomedical parameters

Smart system for invasive measurement of biomedical parameters PDF Author: Bibin John
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832545360
Category : Technology & Engineering
Languages : en
Pages : 164

Get Book Here

Book Description
Permanent monitoring of blood pressure helps in diagnosis and tracking progress of medical interventions. This dissertation details the design, fabrication and implementation of tiny wirelessly powered implant devices for detection of endoleaks and occlusion occurring in stent grafts used for treatment of Abdominal Aortic Aneurysm (AAA) and portal hypertension (due to liver cirrhosis). Custom fabricated low-power application-specific integrated circuit (ASIC) together with pressure sensors and telemetry units for wireless power reception and data transmission form an implant device. Using wireless inductive telemetry links, these devices achieved a wireless range of 20 cm.

Principles of Inductive Near Field Communications for Internet of Things

Principles of Inductive Near Field Communications for Internet of Things PDF Author: Johnson I. Agbinya
Publisher: CRC Press
ISBN: 1000796035
Category : Technology & Engineering
Languages : en
Pages : 326

Get Book Here

Book Description
Near field communication devices and the emerging field of Internet of things require efficient short range communication techniques. Classical telecommunication theory however has so far focused on radiating electromagnetic signals which is more suited to terrestrial communication systems. Over the last decade however considerable research and applications of inductive methods have emerged as innovative approaches for secure short range communications by changing the paradigm of an established model of electromagnetic communications. We have witnessed the emergence of embedded inductive medical devices, magneto-inductive waveguides, inductive pots and cooking devices, magneto-inductive sensors, wireless power transfer, inductive hearing aids and the emerging inductive point-to-point communication specifically termed near-field communication (NFC) as used in mobile phones and payment cards to name a few. While there exist a large set of distributed methods and algorithms detailing the design and performances of such applications, a significant gap is observed as a lack of detailed collection of the methods in one place which could be easily understood and used quickly by someone seeking to apply the methods.In this book this missing gap is filled with the required details and the theory of near field communication systems including both the radiating and reactive (energy coupling) near-field systems in addition to the well known far field radiation techniques. The book details the fundamental expressions and design methods which facilitate the creation of near field devices and equipment including embedded biomedical implants. The book contains recent advances in inductive communications, performance, limitations and a collection of applications. It also lays a strong foundation for the application of inductive methods for creating Internet of Things systems.

Development of a Wirelessly Powered Smart Implant to Monitor Spinal Fusion

Development of a Wirelessly Powered Smart Implant to Monitor Spinal Fusion PDF Author: Nicole (Negar) Zoka
Publisher: The University of Auckland
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 166

Get Book Here

Book Description
Lumbar spinal fusion surgery is performed on patients in whom non-operative treatments have failed to relieve chronic lower back pain (LBP) and restore functionality. The procedure involves inserting titanium alloy rods adjacent to two or more vertebrae on each side of the spine to support spinal fusion. Currently, clinicians rely upon periodic x-ray radiographic images to track fusion progress and determine whether patients can resume normal activities or to assess if the fusion has failed. However, the reliability of imaging evaluation techniques is questionable and leads to either very conservative (and prolonged) restrictions on activity or additional exploratory surgeries. The definitive criteria for a successful fusion remain ambiguous, and determining the progress of spinal fusion remains a challenge for orthopaedic surgeons and clinicians. Observing strain variations on a spinal fusion rod post-implantation has been demonstrated to correlate with changes in bony mass stiffness as fusion progresses, indicating the state of fusion. The challenge with strain measurements relates to having a reliable implant which aligns with existing clinical workflows and provides new data on the state of healing. If the existing titanium alloy rod could be made "smart", i.e. the strain measurement capabilities are embedded into the rod, then the existing clinical, surgical workflow could be maintained. This research focuses on the design and development of a smart spinal fusion implant with the potential to measure strain without complication in the surgical procedure. To meet this aim, two key research questions were addressed. First, a fully implantable wireless spinal rod was developed to support animal trials of spinal fusion. The implant was constructed by mounting a semiconductor strain gauge sensor into a housing machined into a custom spinal rod. A miniaturised electronic module was developed to measure the strain and transmit the data to an external wireless receiver. The module consisted of a strain gauge signal conditioning which was controlled by a microcontroller, and a custom wireless power and data transfer application-specific integrated circuit (ASIC) developed previously at the Auckland Bioengineering Institute (ABI). The electronics module was mounted into the housing, and a printed circuit board (PCB) coil was placed on top of it. This was sealed under a liquid crystal polymer (LCP) lid. Wireless power was transferred to the implant from an external coil at 6.78MHz for 980ms, over which 10 samples of strain were measured. The data was then transmitted using phase-shift keying at a data rate of 678kbps at 6.78MHz. Data was received at an external coil, demodulated and logged to a computer with a measurement cycle taking one second. The implant was characterised on a test rig, and it was confirmed that the 24-bit strain values could be wirelessly measured using the smart spinal implant designed to achieve 1με resolution. This showed that the device was ready for animal trials to quantify strain as fusion occurs in a sheep model. Second, to make the implant clinically relevant, it would be preferable to replace the LCP lid with titanium. LCP is an appropriate seal for animal trials with a lifespan of around several months before water permeates through it, and the device becomes unreliable. Titanium can be welded to the rod to achieve a hermetic seal (gas-tight) with a lifespan of many years, which leads to a smaller device and eases reliable manufacturing as welding is possible. However, this would require transferring inductive power through the conductive titanium lid, which has not been achieved in a spinal implant. Thus, inductive power transfer through metal sheets was investigated via a combination of numerical and experimental tests. A simple test set-up based on hand-wound, cylindrical 10-turn primary (inner radius of 30mm) and 10-turn secondary coils (inner radius of 5mm) was created into which metal sheets could be introduced to allow study their impact on wireless power transfer. The equivalent 2D axisymmetric FEM models were developed to analyse inductive link principles and validate experimental studies. The hand-wound coils were also used to investigate the impact of a titanium enclosure on IWPT system parameters through both simulations and experiments. The simulation results matched experimental results reasonably well, validating the approach; thus, in the future, the validated FEM simulations could be used to investigate power transfer to a miniaturised titanium-packaged smart spinal fusion implant. The impact of the titanium spinal fusion implant, consisting of a titanium spinal rod, housing, and lid, on an IWPT system and an optimum frequency for maximum power transfer was determined. The maximum transferred power was dependent on the titanium alloy, lid thickness, implant size, implant coil location, frequency of power transmission, magnitude of the primary field, and primary and secondary coils dimensions and configurations. FEM simulation results revealed that a maximum power of 1.84mW, at 1A primary current and an operating frequency of approximately 400kHz, could be transferred through a 110μm-thick Grade-5 titanium lid used to seal a 5.5mm-thick, 50mm-long Grade-5 titanium rod, and 0.5m-thick, Grade-5 housing with an internal volume of 18 x 8 x 5mm (L x W x H) for this spinal fusion application. The maximum link potential of 0.035 at 199kHz could be achieved for the same set-up. These results indicated that an acceptable amount of power could be transferred through titanium to power the implanted electronics, supporting the future development of titanium packaged smart spinal fusion rods. This research supports the hypothesis that it is feasible to construct a smart spinal fusion implant that includes the function of measuring strain, can ultimately be employed in clinical practices of spinal fusion, detection of the onset of fusion, non-union or other complications, determination of the efficiency of various bone treatments, and the design of rehabilitation protocols.